Supernovae and Neutrino Elastic Scattering

SN1998S, April 2, 1998 (8" SCT homemade CCD) Trento, June, 2003

Keywords (Prof. Fujita)

- Weak magnetism corrections to the β decay of supernovae as observed via ν-A elastic scattering in solar ν, double β decay, and dark matter detectors,
- Implications for neutrino oscillations, nucleosynthesis, and close in massive planets.
 The FINESE accelerator experiment on elastic v-p scattering to determine the strange quark contribution to the spin of the nucleon.

Supernovae and Weak Interactions

- Core collapse SN dominated by weakly interacting neutrinos. Unique chance for macroscopic manifestations of symmetries and features of standard model weak interactions.
- Example: Large P violation related to large C viol. $\rightarrow v$ -N interaction fundamentally stronger then anti-v-N.
- Difference between v and anti-v is of recoil order, E_v/M , but has a large coefficient from weak magnetism,

 $J_{\mu} = F_1 \gamma_{\mu} + F_2 i \sigma_{\mu\nu} q^{\nu}/2M$

and is important for both charged and neutral currents.

Weak magnetism in SN: Gang Li, Angeles Perez-Garcia and CJH: Phys.Rev. D65 (2002) 043001, astro-ph/0305138.

v Spectra (Before Osc.)

Structure: Charged Currents split v_e from v_x Fine Structure: Weak Magnetism splits v_x from $\overline{v_x}$

Hyper-fine: Muons split v_{μ} from v_{τ} ?

Measure Energy of v_x

- \blacksquare E(v_x)-E(v_e) is "lever arm" for neutrino osc.
- Measure total E of SN. This is binding energy of neutron star.
 - Most of SN energy in v_x .
 - N Star binding $E \sim M^2/R$.
 - Mass of NS interesting, could later collapse to black hole.
 - Nucleosynthesis depends on "compactness" M/R. Larger value gives higher entropy for escaped material.

Existing SN v Detectors

- Measure E of anti- v_e well: $\overline{v}_e + p \rightarrow n + e^+$.
- Detect v_x without direct E information.
 - ${}^{16}O(v_x, v_x'){}^{16}O^* \rightarrow \gamma + {}^{16}O \text{ in SK.}$
 - $d(v_x, v_x')$ np \rightarrow count n in SNO.
- To directly measure E(v_x) need two body final state: ve (small cross section), v-p elastic (perhaps possible in Kamland –J. Beacom), v-A elastic.
- Coherent ν-A cross section very large and spectrum of recoils gives ν_x spectrum. But E is low ~ 50 keV.

Huge Elastic Signal

Assume SN at 10 kpc, 3× 10⁵³ ergs total energy, equal partition of energy among six flavors, and T(v_x), T(anti-v_e), T(v_e) = 8, 5, 3.5 MeV see astroph/0302071.

■ Yield much larger then existing detectors (100s of anti-v_e and 10s of v_x per *kilo*-ton).

Nucleus	Events/	<e></e>
	ton	
⁴ He	0.9	240 keV
¹² C	2.5	83
²⁰ Ne	4.0	46
⁷⁶ Ge	18.6	9.5
¹³² Xe	31.1	4.8

Recoil Spectra for Different Targets

Dotted curve for ²⁰Ne assumes T for $v_x = 5$ MeV others use 8 MeV.

Detecting Low E Recoils

- Physics of detecting low E solar ν , dark matter via nuclear recoils, and double β decay similar to SN ν -A elastic.
- Lots of work on large mass, low threshold, low background detectors.
- Background for SN v much less severe then others because of high count rate.
- ββ decay: Proposed Majorana and Genius detectors will involve ¹/₂-1 ton of ⁷⁶Ge. [Existing Ge exps have needed threshold and background rates.] These should be sensitive to a galactic SN!
- Dark Matter: It may take ton quantities of Xe or other materials coupled with extraordinary background rejection to probe most of SUSY parameter space.

CLEAN Detector

- Cryogenic Low Energy Astrophysics with Noble gases.
- Based on liquid Ne which scintillates in UV and is easy to purify (little intrinsic background).
 "Day job" detect low E pp solar ν via ν-e elastic. Constrains Θ₁₂ ... important to verify fundamental pp flux.
- Sensitive to dark matter.

CNO ν

- CNO cycle captures 4 protons on CNO nuclei with two beta decays to produce an alpha particle. No net change in C, N, O.
- CNO cycle is energy source for stars slightly hotter then sun. In sun CNO is only about 1-2% of pp burning.
- CNO v flux very sensitive to both T and metal abundance. Central metal abundance also important for opacity which determines temperature.
- Measure both ⁸B and CNO v fluxes. Allows determination of both central T and metal abundance of sun.
- Can test for contamination of outer convection zone with metals from fallen "hot Jupiters".
- Final search for the planet Vulcan???

CLEAN Simulation

- Kevin Coakly, Dan Mckinsey, CJH, astroph/0302071.
- Phototubes with wavelength shifters view 100 tons of liquid Ne.
- Assume background dominated by U, Th, K... in phototubes, shifters and support structure.
- Find event position from hit pattern in phototubes.

Supernova at 10 kpc in CLEAN

- Simulation of full 100 ton active mass.
- Threshold (no position resolution) about 5 keV.
- Green curve is total low energy background in 10 seconds.
- Black or red curves are SN signal (≈ 400 events) for different v_x temperatures.

Simulation of Inner 70 Tons

- Can reduce background with position cuts. Most background events on outside edges.
- Threshold, if position resolution, ~ 25 keV.
- If background matches simulations don't need cuts.
- Many ways to reduce background further.
- Supernova detection in CLEAN looks robust.

Very large elastic cross section may allow larger statistics in future

Supernova v detectors

- Important to make model independent measurements!
- Do not assume everything is known but one parameter in your model!
- One wants a simple well known detector response.
- Elastic scattering has almost no theoretical uncertainty in cross section.
 - Important to have multiple redundant experiments.
- Important to hope for surprises! This is how we will learn the most.

"Ultimate Flux Normalization"

- The v-A elastic cross section is both very accurately known and very large.
- If the recoil ions can be detected, they could provide a very accurate absolute calibration of the neutrino flux.
- Micropattern gas detectors may observe reactor antineutrinos via elastic v-A scattering, see P. Barbeau et al, hep-ex/0212034.

R-Process Nucleosynthesis

•As neutron rich medium cools, nuclei capture n to make heavy nuclei.

•Results depend on initial n/p ratio, entropy and expansion time scale.

•Need large n excess and high entropy

•Is v-driven wind in supernovae r-process site?

Solar system heavy element abundances divided into s-process (red giant) and r-process

R-process in Neutrino driven wind

- Low density region above protoneutron star dominated by large v flux.
- Initial neutron to proton ratio and Y_e in wind set by relative rates:

$$\nu_e + n \to p + e^- \tag{1}$$
$$\bar{\nu}_e + p \to n + e^+ \tag{2}$$

Cross section for (1) > (2) because of n-p mass difference and because of weak magnetism. For fixed v flux, weak magnetism increases Y_e by 20%.

In neutrino driven wind, v eject a few baryons from surface of protoneutron star.

n/p ratio in v-driven wind

For wind to be neutron rich must be above dark Y_e=0.5 line and below SN1987A limit line. This requires cold v_e temperatures, top scale.

Neutrino Driven Wind is Not Significantly Neutron Rich

- Not site for r-process?
- New neutrino physics such as oscillations to sterile neutrinos that decreases Y_e.
- R-process occurs at much higher entropies (somehow) with Y_e just below 0.5.
- Example, very strong magnetic fields ~10¹⁵G keep material in v heating region longer to greatly increase S.

v-n Elastic Important for Opacity

- Significant energy transport by $v_x (\equiv v_{\mu}, v_{\tau})$ because twice as many as v_e and without charged currents, v_x have longer mean free paths.
- Opacity of v_x mostly from v-n elastic.
- Incorrect elastic cross sec caused Oak Ridge simulation to explode when it did not with correct one.
- Uncertainty in v-n cross sec from strange quarks relevant for SN simulations.

FINESE: Fermi Lab Intense v Scattering Experiment

- Proposed near detector on MiniBooNE beam line.
- Measure Δ s via ratio of neutral to charged current.
- D. H. Potterveld, P. E. Reimer Argonne National Laboratory
 B. T. Fleming, R. Stefanski Fermi National Accelerator Laboratory,
 C. Horowitz, T. Katori, H.-O. Meyer,
 R. Tayloe Indiana University
 G. Garvey Los Alamos National Laboratory
 J.-C. Peng University of Illinois

Strange quark content of nucleon

- Three form factors
- $\square F_1^{s}, F_2^{s}, G_a^{s}$
- Low Q limits:

$$\langle f | J_{\mu}^{H} | i \rangle = \tilde{u}_{f}(p') \left[\gamma_{\mu}F_{1}(Q^{2}) + i\frac{\sigma^{\mu\nu}}{2M_{p}}q^{\nu}F_{2}(Q^{2}) + \gamma_{\mu}\gamma_{5}G_{A}(Q^{2}) \right] u_{i}(p) ,$$

- $F_1^{s}(0)=0$, $dF_1^{s}/dQ^2 \rightarrow$ strangeness radius ρ_s ,
- $F_1^s = (\rho_s + \mu_s) Q^2 / 4M^2$ for small Q^2
- $F_2^{s}(0) = \mu_s$ strange magnetic moment,
- $G_a^{s}(0) = \Delta s$, fraction of nucleon spin carried by s

A Future v-p Elastic Experiment

Physics goals are compelling:

- $G_a^{s}(Q^2)$ and Δs .
- F_2^{s} independent of PV radiative correc.
- Very attractive v fluxes at beam lines for long baseline v-oscillation exp.
- Measuring ratio of neutral to charged currents is simple and controls many systematic errors.

Measure ∆s via Ratio of Neutral to Charged Current Scattering

- Ratio of protons from: $\nu + p \rightarrow \nu + p$ to protons from: $\nu + n \rightarrow \mu^- + p$.
- Note, both are quasielastic scattering from an N=Z nucleus such as ¹²C.
- Very simple observable: ratio of protons of a given E without muons to those with muons.

Example: $E_v = 0.8$ GeV, $Q^2 = 0.5$

■ Neutral to CC ratio $R \approx 0.14$

Error in extracted	Δs	
■ 5% measurement of R	0.04	
• ± 0.03 GeV uncer. in M _A	0.01	
• ± 0.3 uncer. in μ_s	0.07	
• ± 2 uncer. in ρ_s	0.002	
[Assume $G_a^{s} = \Delta s / (1 + Q^2 / M_A^2)^2$]		
\sim 5% ratio sensitive to Δ s at	± 0.04	
Determine one combinatio	on of Δ s and μ_s from v and	
another from anti-v		

Experimental Considerations

- Many systematics, such as absolute flux, proton efficiency, cancel in ratio.
- Need to identify pions to separate elastic from inelastic events. [This may require a segmented detector.]
- Possible backgrounds from neutrons and multiple nucleon knockout.
- Many nuclear structure issues also cancel in ratio, however don't go too low in Q^2 . Want proton recoil energy to be large compared to giant resonances T_{lab} >50-100 MeV (can use more calculations).
- Note, more counts and closer to Q²=0 limit for Δs at low Q. Tradeoff in Q² choice.

Conclusions

- Important to measure v_{μ} , v_{τ} since they contain most of E and benchmark for v oscillation measurements.
- v-A elastic scattering has large yield, information on ν_µ,
 v_τ energy spectrum, and very clean theoretical interpretation.
- Good way to measure total E of SN which is important and interesting.
- Liquid Ne [CLEAN] looks very good, 4 events/ton for galactic SN. This is a factor of 20 or more greater yield than large yield v_e-bar capture in H₂O.