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ν oscillations are the most important discovery in hep of the last 15 years.

They measure fundamental parameters of the standard model. Mixing angles, neutrino

masses and the CP phase δCP are fundamental constants of the standard model.

They are a probe of the GUT scales . The smallness of neutrino masses is connected to

the GUT scale through the see-saw mechanism.

They are directly linked to many fields in astrophysics and cosmology : baryogenesis,

leptogenesis, galaxies formation, dynamic of supernovae explosion, power spectrum of

energy anisotropies, etc.

They open the perspective of the measure of leptonic CP violation.
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If you are skeptical about that ....

Experimental articles with more than 500 cites in the last 15 years in the

QSPIRES database (at 04/04/03):

1 SK Evidence for Oscillation of Atmospheric Neutrinos. 1705
2 SCP Measurements of Ω and Λ from 42 High Redshift SN. 1311

3 SST Observational Evidence from SuperNovae for an

Accelerating Universe and a Cosmological Constant.

1293

4 COBE Structure in the COBE DMR First Year Maps. 1036
5 CDF Observation of TOP Quark Production in p− p Collisions. 930

6 D0 Observation of the Top Quark. 889

7 SK Atmospheric νµ/νe Ratio in the MultiGeV Energy Range. 751

8 Chooz Initial Results from CHOOZ. 683
9 Boomerang A Flat Universe from High Resolution Maps of the CMB. 644

10 Chooz Limits on Neutrino Oscillations from the CHOOZ

Experiment.

635

11 Kamiokande Observation of a Small Atmospheric νµ/νe Ratio. 628
12 CLEO First Measurement of the Rate for the Inclusive b —> sγ. 618

13 SNO Measurement of the rate of νe + d –> p + p + e- ... 592

14 Homestake Measurement of the Solar νe Flux ... 565

15 LSND Evidence for νµ —> νe Oscillations from LSND. 563
16 SK Measurement of a Small Atmospheric νµ/νe Ratio. 561

17 CDF Evidence for TOP Quark Production in p − p .... 550

18 SK Study of the Atm. ν Flux in the MultiGeV Energy Range. 547

19 IMB The νe and νµ Content of the Atmospheric Flux. 535

20 SK Solar Neutrino Data Covering Solar Cycle 22. 504
21 LSND Neutrino Oscillations from LSND. 500
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Most of the parameters are waiting to be measured
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The capital importance of θ13

Present limit from CHOOZ: sin2 2θ13 ≤ 0.1. Both solar and atmospheric results are compatible with θ13 = 0.

Solar+Atmospherics favor a near bi-maximal mixing matrix (VERY DIFFERENT from CKM matrix!)

U =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1


 ,

θ13 → 0 ⇒ The 3x3 matrix is a trivial product of two 2x2 matrixes.

θ13 drives νµ → νe subleading transitions ⇒
the necessary milestone for any subsequent search:

neutrino mass hierarchy and leptonic CP searches.
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Subleading νµ − νe oscillations
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JHF-Japan Hadron Facility at Jaeri

Neutrino beam from the 50 GeV - 0.75 MW

proton beam at the Hadron Facility at Jaeri,

Japan.

Taken off-axis to better match the oscillation

maximum at the SuperKamiokande location

(295 km).
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JHF: νµ disappearance

K2K at half of its statistics:

0

2

4

6

8

10

12

0 1 2 3 4 5
Eν

rec

E
ve

nt
s

JHF in 5 years
• δm2

23 with a resolution of 10−4 eV2.

• sin2 2θ23 at 1 ÷ 2 %.

0 1000 30002000
E (MeV)ν

10

1

-1

Ratio of the measured νµ spectrum with respect to the

non-oscillation prediction in case of oscillation.

M. Mezzetto, “Physics Potential of Beta Beams and Super Beams”, Weak Interactions in Nuclei and Astrophysics: Standard Model and Beyond, ECT Trento, 16-21 June 2003. 8



JHF νe appearance

OAB 2◦ νµ CC νµ NC νe CC Osc. νe

Generated in F.V. 10713.6 4080.3 292.1 301.6
1R e-like 14.3 247.1 68.4 203.7
e/π0 separation 3.5 23.0 21.9 152.2
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Leptonic CP

Two conditions to make Leptonic CP detectable:

• Solar LMA confirmed

• θ13 ≥ 0.50 (see the following).

A big step from a θ13 search:

from p(νµ → νe ) �= 0 to




p(νµ → νe ) �= p(νµ → νe ) (direct CP)

p(νµ → νe ) �= p(νe → νµ ) (T search)

This will require:

1. Neutrino beams of novel conception.

Super Beams

Neutrino Factory

Beta Beams

2. Detectors of unprecedent mass

3. Improved control of systematics ⇒ Dedicated experiments on neutrino cross-sections, hadron

production, particle ID.
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Detecting the δ phase.

AÆ = [P (ν� → ν� , δ = +π/2) − P (ν� → ν� , δ = 0)]/[P (δ = +π/2) + P (δ = 0)]

Compare the measured νe → νµ oscillation probability, as a function of the neutrino energy Eν , to a “Monte-Carlo”

prediction of the spectrum in absence of δ-phase.

Problems: it’s model dependent, requires a precise knowledge of the other oscillation parameters, possible degeneracy

between solutions and strong correlation with the θ13 parameter.

A�� (δ) = [P (ν� → ν� , δ) − P (ν� → ν� , δ)]/[P (ν� → ν� , δ) + P (ν� → ν� , δ)]

Compare the appearance of νµ (νµ ) in a beam of stored µ+( µ−)decays as a function of the neutrino energy Eν .

Problems It must compete with the fake CP from matter effects. Run time is more than doubled: ν cross sections are half

the ν cross section and matter effects disfavor ν oscillations.

A� (δ) = [P (ν� → ν� , δ) − P (ν� → ν� , δ)]/[P (ν� → ν� , δ) + P (ν� → ν� , δ)]

Compare the appearance of νµ in a νe beam AND νe in a νµ beam as a function of the neutrino energy Eν .

Problems Electron charge must be measured in case of a neutrino factory experiment. Systematics of muon and electron

efficiencies must be kept to very small values.
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SPL-SuperBeam at CERN

A feasibility study of the CERN possible developments

Decay Tunnel

νν

Possible Low Energy Super Beam Layout
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νµ  3.23E+14   0.27

νe  2.16E+12   0.32   0.668

νµ  5.16E+12   0.28   1.598

νe  1.24E+10   0.29   0.004

Flux intensities at 50 km from the target

Flavour Absolute Flux Rel. Flux 〈Eν〉
(ν/1023pot/m2) (%) (GeV)

νµ 3.2 · 1012 100 0.27

νµ 2.2 · 1010 1.6 0.28

νe 5.2 · 109 0.67 0.32

νe 1.2 · 108 0.004 0.29

M. Mezzetto, “Physics Potential of Beta Beams and Super Beams”, Weak Interactions in Nuclei and Astrophysics: Standard Model and Beyond, ECT Trento, 16-21 June 2003. 12



H- RFQ1 chop. RFQ2RFQ1 chop. RFQ2 RFQ1 chop. RFQ2DTL CCDTL RFQ1 chop. RFQ2β 0.52  β 0.7  β 0.8        LEP-II dump

Source  Low Energy section    DTL Superconducting section

45 keV                       7 MeV             120 MeV                      1.08 GeV                     2.2 GeV

3 MeV 18MeV    237MeV 389MeV

13m 78m 334m 345m

PS / Isolde

Stretching and
collimation line

Accumulator Ring

MW-Linac: SPL (Superconducting Proton Linac)

Re-use superconductingRe-use superconducting
LEP cavities cavities

EKIN = 2.2 GeVEKIN = 2.2 GeV
Power = 4 MWPower = 4 MW
Protons/s = 10Protons/s = 1016

10  protons/year10  protons/year
23
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UNO detector

• Fiducial volume: 440 kton: 20 times SuperK.

• 60000 PMTs (20”) in the inner detector,

15000 PMTs in the outer veto detector.

• The killer detector

for proton decay, atmospheric neutrinos,

supernovae neutrinos.

• Energy resolution is poor for multitrack

events but quite adequate for sub-GeV

neutrino interactions.

• It would be hosted at the Frejus laboratory,

130 km from CERN, in a 106 m3 cavern to

be excavated.
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Interesting features of a low energy conventional neutrino beam.

ν beam:
• 〈Eνµ 〉 	 0.25 GeV ⇒ L ∼ 100 km ⇒ NO MATTER EFFECTS.

• νe production by kaons largely suppressed by threshold effects.

νe in the beam come only from µ decays.

π+ −→ µ+νµ�
e+νeνµ

⇒

they can be predicted from

the measured νµ CC

spectrum both at the close

and at the far detector with

a small systematic error of

∼ 2%.

Detector Backgrounds
• Good e/π0 separation following the large π0 → γγ opening angle

• Good e/µ separation in a Čerenkov detector because µ are produced

below or just above the Čerenkov threshold.

• Charm and τ production below threshold.

Less exiting aspects of a low
energy neutrino beam
• Cross sections are small ⇒

large detectors are necessary in

spite of the very intense neutrino

beam.

• νµ production is disfavored for

two reasons:

– Smaller π− multiplicity at the

target.

– νµ /νµ cross section ratio is

at a minimum (1/5).

• Visible energy is smeared out by

Fermi motion ⇒
Counting Experiment.
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A comparison of CP sensitivities: Nufact vs. SuperBeam

CP sensitivity, defined as the capacity to separate at 99%CL max

CP (δ = π/2) from no CP (δ = 0).

Nufact and SPL-SuperBeam sensitivities computed with the same

conditions.
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The limiting factors for the SuperBeam at small

θ13 values are:

• The low flux of ν and their small cross

section. This limits the overall statistic.

• The beam related backgrounds that increase

the statistical errors, hiding the CP signal.

As an example for θ13 =3◦, δm2
12 =

0.7 · 10−4 eV 2, sin2 2θ12 = 0.8:

νµ beam νµ beam
2 years 8 years

µCC (no osc) 36698 23320
Oscillated events (total) 45 133
Oscillated events (cp-odd) -84 53
Intrinsic beam background 140 101
Detector backgrounds 36 49
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Can the SuperBeam+UNO combination be upgraded?

YES
with a novel concept of neutrino beam: BETA BEAM.
(P. Zucchelli: Phys. Lett. B532:166, 2002)
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Beta Beam
M. Lindroos and collaborators, see http://beta-beam.web.ch/beta-beam

Decay
Ring

Decay ring

B rho = 1500 Tm
B = 5T
L  = 2500 mss

LINAC 3

PSB

SPL

Isol target
& Ion source

EURISOL

SPS

Existing at CERN

PS

• 1 ISOL target to produce He6, 100 µA, ⇒ 2.9 · 1018 ion decays/straight session/year. ⇒ νe .

• 3 ISOL targets to produce Ne18, 100 µA, ⇒ 1.2 · 1018 ion decays/straight session/year. ⇒ νe .

• The 4 targets could run in parallel, but the decay ring optics requires:

γ(Ne18) = 1.67 · γ(He6).
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Beta Beam Backgrounds

Computed with a full simulation and reconstruction program. (Nuance + Dave Casper).

π from NC interactions

The main source of background comes from pions

generated by resonant processes (∆++ production) in NC

interactions.

Pions cannot be separated from muons.

However the threshold for this process is 	 400 MeV.

Angular cuts have not be considered.

e/µ mis-identification

The full simulation shows that they can be kept well below

10−3 applying the following criteria:

• One ring event.

• Standard SuperK particle identification with likelihood

functions.

• A delayed decay electron.

Atmospheric neutrinos

Atmospheric neutrino background can be kept low only by

a very short duty cycle of the Beta Beam. A reduction

factor bigger than 103 is needed.

This is achieved by building 10 ns long Ion bunches.
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Optimizing the Lorentz Boost γ (L=130 km): preferred values: γ = 55 ÷ 75

Higher γ produce more CC interactions

More collimated neutrino production and higher cross

sections.
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Fluxes
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Fluxes @ 130 km < Eν > CC rate (no osc) < Eν > Years Integrated events
ν/m2/yr (GeV) events/kton/yr (GeV) (440 kton × 10 years)

SPL Super Beam
νµ 4.78 · 1011 0.27 41.7 0.32 2 36698
νµ 3.33 · 1011 0.25 6.6 0.30 8 23320

Beta Beam
νe (γ = 60) 1.97 · 1011 0.24 5.2 0.28 10 28880
νe (γ = 100) 1.88 · 1011 0.36 39.2 0.43 10 172683
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The SuperBeam - BetaBeam synergy: CP, T and CPT

No other realistic scenario can offer CP, T and CPT searches at the same time in the same detector!!!!

CP Searches

• SuperBeam running with νµ and νµ .

• Beta Beam running with 6He (νe ) and 18Ne (νe ).

T searches

• Compare Super Beam p(νµ → νe ) with Beta Beam 18Ne p(νe → νµ )

• Compare Super Beam p(νµ → νe ) with Beta Beam 6He p(νe → νµ ).

CPT searches

• Compare Super Beam p(νµ → νe ) with Beta Beam 6He p(νe → νµ ).

• Compare Super Beam p(νµ → νe ) with Beta Beam 18Ne p(νe → νµ )
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The SuperBeam - BetaBeam synergy: a benchmark on θ13 sensitivity

Computed for δCP = 0 and 5 years running.

• Super Beam → 96× CHOOZ.

• Super Beam + Beta Beam → 160× CHOOZ.

• Beta Beam can measure θ13 both in appearance and in disappearance mode. All the
ambiguities can be removed for θ13 ≥ 3.4◦
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Beta Beam - Super Beam synergy: CP sensitivity

SUPER BEAM ONLY
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δm2
12 = 7 · 10−5 eV 2, θ13 = 1◦, δCP = π/2

10 yrs (4400 kton/yr) SuperBeam Beta Beam

νµ νµ νe (He6) νe (Ne18)

(2 yrs) (8 yrs) γ = 60 γ = 100

CC events (no osc, no cut) 36698 23320 28880 172683

Total oscillated 1.7 33.3 0.5 84.2

CP-Odd oscillated -25.5 16.9 -11.9 41

Beam backgrounds 141 113 / /

Detector backgrounds 37 50 1 299

Statistical Error 13.4 13.6 1.5 21.9

Error on θ23 2.1 1.7 0.5 4.7

Error on δm2
12 2.8 1.9 0.3 8.1

Total Error 13.9 14.6 1.7 25.7
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θ13=1 ∆m223=2.5E-03 ∆m212=7.0E-05 L=130 γHe6=60

θ13

δ
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Ambiguities

• The asymmetric statistics and background rates in the

νe and νe beams produce an asymmetric response to the

positive and negative values of δ.

• Even if the matter effects are negligible, the p(νµ →
νe ) formula contains odd sign(δm2

13) terms .

• The change of sign(δm2
13) produces non negligible

changes in the oscillation formula. No attempt made so

far to fit sign(δm2
13), θ13 and δ at the same time.

• Results are shown in the following for positive values of δ

and sign(δm2
13).

– sin2 2θ23 = 1.0

– δm2
23 = 2.5 · 10−3 eV2.

– sin2 2θ12 = 0.8
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A comparison of CP sensitivities: Beta Beam vs. Nufact

CP sensitivity, defined as the

capacity to separate at 99%CL max

CP (δ = π/2) from no CP (δ = 0).

Nufact sensitivity as computed in J.

Burguet-Castell et al., Nucl. Phys. B

608 (2001) 301:

• 50 GeV/c µ.

• 2 · 1020 useful µ decays/year.

• 5+5 years.

• 2 iron magnetized detectors, 40

kton, at 3000 and 7000 km.

• Full detector simulation, including

backgrounds and systematics.
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Some comments about the comparison

The sensitivity computation depends from many implicit assumptions, input

parameters, degeneracy treatment, statistical methods, tricks, bugs etc.

A fair comparison should be made by the same group using the same

methods for the different facilities (a call for collaboration ...)

The plot doesn’t tell anything about the fits in a arbitrary (θ13 , δ) point.
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The small θ13 region is particularly delicate: going the absolute probabilities

down to zero, it’s very sensitive to:

• Background levels.

• Statistical treatment of data

• Input parameters and their errors.

In the large θ13 region the CP asymmetry is small. This favours the Super-Beta

Beams, because they don’t have to compete with matter effects.
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Conclusions

The next (4th, 5th?) generation of accelerator ν oscillation experiments will address the

problem of measuring θ13

Then the difficult, long and very expensive searches for Leptonic CP violations

Beta Beam is a (CERN based) realistic facility that could profit of very deep synergies with:

• Nuclear physicists aiming at a very intense source of radioactive ions.

• A gigantic water Cerenkov detector with great physics potential in its own.

The Super-Beta Beams combination can address δCP discovery with a sensitivity similar to

the Neutrino Factory having the distinctive possibility of:

• Combine CP, T and CPT searches

• Use νe disappearance to solve all the ambiguities for reasonable large values of θ13 .
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