Asymmetry of Gamow-Teller β-decay rates in mirror nuclei

Nadya A. Smirnova

Vakgroup Subatomaire en Stralingsfysica, Universiteit Gent, Belgium

Cristina Volpe

Institut für Theoretische Physik, Universität Heidelberg,Germany Institut de Physique Nucléaire, Orsay, France

- History of the subject: search for second-class currents
- Motivation to the present work
- Shell model framework
- Results

See also, N.A.S., C.Volpe, Nucl. Phys. A714 (2003) 441

Asymmetry of Gamow-Teller β -decay rates in mirror nuclei

Example of A=12

Peterson, Glass (1963); Fisher (1963)

Weak interactions, ECT*, 16-21 June 2003

Empirical systematics of asymmetries in allowed Gamow-Teller transitions (earlier 70's)

A < 30 :

11 pairs of mirror nuclei (11 transitions) $|\Delta T| = 1$; $|\Delta J| = 0$, 1; $\pi_{l} = \pi_{f}$.

 $W_{0^{+},W_{0^{-}}}$ are maximum energy release in the $\beta(+,-)$ decay

D.H.Wilkinson (1970)

Reasons for asymmetry:

- 1. Weak interaction
- 2. Nuclear structure effects

Second-class currents in the weak interaction

$$H_{\nu-A} = \frac{G}{\sqrt{2}} J_{\mu}^{+} j_{\mu} + H.c. , \qquad J_{\mu}^{+} = V_{\mu} + A_{\mu}$$

$$V_{\mu} = i \overline{\Psi}_{p} \left[g_{\nu} \gamma_{\mu} + \frac{g_{M}}{2M} \sigma_{\mu\nu} k_{\nu} + ig_{S} k_{\mu} \right] \Psi_{n}$$
vector weak induced magnetism iscalar
$$A_{\mu} = i \overline{\Psi}_{p} \left[g_{A} \gamma_{\mu} \gamma_{5} + \frac{g_{T}}{2M} \sigma_{\mu\nu} \gamma_{5} k_{\nu} + ig_{P} k_{\mu} \gamma_{5} \right] \Psi_{n}$$
axial vector induced tensor induced pseudoscalar
$$\mathbf{Time-reversal invariance:} \quad g_{V}, g_{M}, g_{S}, g_{A}, g_{T}, g_{P} \quad \text{are real}$$

$$G = C \exp(-i\pi I_{2}): \qquad GV_{\mu}^{+} G^{+} = -V_{\mu}^{+}, \quad GA_{\mu}^{+} G^{+} = -A_{\mu}^{+}$$

$$GV_{\mu}^{+} G^{+} = -V_{\mu}^{+}, \quad GA_{\mu}^{+} G^{+} = A_{\mu}^{+}$$

$$CVC: \qquad g_{V} = 1, g_{M} = \hbar(K_{p} - K_{n})/2Mc, g_{S} = 0$$

$$\mathbb{PCAC:} \quad Weak interactions, ECT*, 16-21 June 2003$$

Theoretical estimations of second-class currents

$$\left|\frac{g_T}{g_M}\right| = \frac{M_p - M_n}{2M} \approx 7 \times 10^{-4}$$

J.F.Donoghue, B.R.Holstein (1982)

 $\frac{g_T}{g_M} = 0.0052 \pm 0.0018$

QCD sum rules: H.Shiomi (1996)

Experimental searches

nuclear physics

ft-values

 $\delta = \frac{(ft)_+}{(ft)_-} - 1$

S.Weinberg (1958) ;J.N.Huffaker, E.Greuling (1963); K.Kubodera, J.Delorme, M.Rho (1973,1977)

• A=8 system

D.H.Wilkinson, D.E.Alburger (1971)

• $(\beta\gamma)$, $(\beta\alpha)$ correlation experiments

B.R.Holstein (1976,1977,1984)
A=8: L.De Braeckeleer (1992); L.De Braeckeleer et al (1995); J.F.Amsbaugh, M.Beck, L.De Braeckeleer et al (1997)
A=12: T.Minamisono et al (1998)
A=20: L. Van Elmbdt, J.Deutsch, R.Prieels (1987)

Weak interactions, ECT*, 16-21 June 2003

particle physics $\tau^{-} \rightarrow \omega \pi^{-} v$ 0.0195±0.0007±0.0011 R.Balest et al (1995) D.Buskalic et al (1997) $\tau^{-} \rightarrow \eta \pi^{-} v$ <1.4 ×10⁻⁴ J.Bartelt et al (1996) $\overline{v}_{\mu} p \rightarrow \mu^{+} n$

μι

L.A.Ahrens et al (1988)

ft-values of mirror transitions

$$\delta = \frac{(ft)_{+}}{(ft)_{-}} - 1 = \delta_{scc} + \delta_{nucl}$$

S.Weinberg (1958)

1. Second-class currents (scc) contribution

Impulse approximation:

 $\delta_{scc} = -\frac{4g_T}{3g_A} \left(W_0^+ + W_0^- \right)$

J.N.Huffaker, E.Greuling (1963)

 W_0^+, W_0^- is the maximum energy release in the β^+, β^- decay

Including off-shell and meson exchange effects:

$$\delta_{scc} = -4 \frac{\lambda}{g_A} J + \frac{4}{3g_A} \left(\frac{1}{2} \lambda L - \zeta \right) \left(W_0^+ + W_0^- \right), \quad \zeta = g_T + g'_T$$

K.Kubodera,J.Delorme,M.Rho (1973)

(<2-5%)

2. Nuclear structure effects

- Coulomb and isospin non-conserving nuclear forces (~6-18%)
- second-forbidden matrix elements (< -1.5%)
- induced weak currents (weak magnetism, induced pseudoscalar) (~ \pm 0.5%)
- screening corrections (~ -0.02%)
- radiative corrections (~ ±0.04 %)

R.J.Blin-Stoyle, M.Rosina (1965); D.H.Wilkinson (1971); J.Blomqvist (1971); I.S.Towner (1973)

Weak interactions, ECT*, 16-21 June

2003

Binding energy effect

Radial dependence of the nucleon wave function

 $u(r) \propto \exp\left(-\sqrt{\frac{2M(E_0 - E)}{\hbar^2}} r\right)$

Coulomb and nuclear potential

Figure from J.C.Thomas, Ph.D.Thesis (2002)

A=8 system

$$\delta_{scc} = -\frac{4g_T}{3g_A} \left(W_0^+ + W_0^- \right)$$

$$\frac{N^- (E_x) / f(W_0^-)}{N^+ (E_x) / f(W_0^+)} = const \times \left[1 + \xi \left(W_0^+ + W_0^- \right) \right]$$

 $|g_T| < 7 \times 10^{-4}$

D.H.Wilkinson, D.E.Alburger (1971)

Correlation experiments

A=8: ($\beta\alpha$)-correlation

 $g_M\,,g_T$

L. De Braeckeleer (1992); L. De Braeckeleer et al (1995); J.F.Amsbaugh, M.Beck, L. De Braeckeleer et al (1997)

A=12: β -ray angular distribution from aligned ¹²B and ¹²N

 $2M g_T/g_A = +0.22 \pm 0.05(stat) \pm 0.15(syst) \pm 0.05$

T.Minamisono et al (1998)

Weak interactions, ECT*, 16-21 June 2003

From: J.F.Amsbaugh, et al (1997)

Motivation

There are still searches for the existence of the second-class currents
 β-spectroscopy in A=21,25 (Experiment E398 in GANIL, 2003)
 B.Blank, J.C.Thomas

• New data on GT transition rates for p and sd-shell nuclei (A=8,9,12,13,17,20,21,25,28,31,33,35)

 Advances in the theoretical description of p- and sd-shell nuclei compared to early 70's

USD interaction (Wildenthal, 1984); Isospin non-conserving Hamiltonians (E.Ormand, B.A.Brown, 1989)

The aim of the study: Systematical calculation of major nuclear structure contributions to asymmetries of ft-values for mirror transition in p- and sd-shell nuclei within the nuclear shell model

Difficulties:

- Accuracy of the nuclear wave functions
- PCAC: renormalization of g_A (g_A^{eff} =0.77 g_A)

Empirical systematics of asymmetries in allowed Gamow-Teller transitions

$$\delta = \frac{(ft)_+}{(ft)_-} - 1$$

A < **40** : 12 pairs of mirror nuclei (30 transitions) $|\Delta T| = 1$; $|\Delta J| = 0$, 1 ; $\pi_{l} = \pi_{f}$.

J.C.Thomas, Ph.D. thesis (2002)

Shell Model formalism

$$\delta = \frac{(ft)_{+}}{(ft)_{-}} - 1 = \left| \frac{M_{-}}{M_{+}} \right|^{2} - 1$$

$$M_{\pm} \equiv \left\langle f \left\| \sum_{k} \sigma(k) \tau_{\pm}(k) \right\| i \right\rangle = \sum_{j_{1}, j_{2}, \pi} X(j_{1}, j_{2}, J_{i}, J_{f}, J_{\pi}) S^{1/2}(j_{2}, J_{f}, J_{\pi}) S^{1/2}(j_{1}, J_{i}, J_{\pi}) \Omega_{j_{1}j_{2}}^{\pi} \right\rangle$$

Spectroscopic factors from isospin non-conserving shell model Hamiltonian

,

Ormand, Brown (1989)

Radial wave functions are obtained from Woods-Saxon potential with Coulomb and charge-dependent corrections

 $\Omega^{\pi}_{j_1 j_2} = \int R^{\pi}_{n_1 j_1 l_1}(r) R^{\pi}_{n_2 j_2 l_2}(r) r^2 dr$

$$V(r) = -V_{ws} f(r) - V_{ls} \frac{r_0^2}{r} \frac{d}{dr} (f(r)) \vec{l} \cdot \vec{s} + V_c h(r) + V_{sym}$$
$$f(r) = \frac{1}{1 + \exp((r - R_0)/a)}, h(r) = \begin{cases} \frac{1}{r} \\ \frac{1}{2R_0} \begin{pmatrix} 3 - \frac{r^2}{R_0^2} \end{pmatrix} \end{cases}$$

Test of the wave functions: static electromagnetic moments for p-shell nuclei

Weak interactions, ECT*, 16-21 June 2003

B(GT)-values for mirror transitions in p- and sd-shell nuclei

B(GT)-values for mirror transitions in p-shell nuclei

	$J_{i}^{\pi}; T_{i}$	$J_f^{\pi}; T_f$	INC + HO	IC + WS	INC + WS	(INC + WS)*	EXP
$^{8}\mathrm{Li}(eta^{-})^{8}\mathrm{Be}$ $^{8}\mathrm{B}(eta^{+})^{8}\mathrm{Be}$	2+;1 2+;1	$2_1^+;0$ $2_1^+;0$	0.1170 0.1135	0.0265 0.0082	0.1006 0.0863	0.0984 0.0828	0.0158(2) 0.0146(2)
$^9\mathrm{Li}(eta^-)^9\mathrm{Be}$ $^9\mathrm{C}(eta^+)^9\mathrm{B}$	$\frac{3}{2}^{-}; \frac{3}{2}$ $\frac{3}{2}^{-}; \frac{3}{2}$	$\frac{3}{21}^{-}; \frac{1}{2}$ (g.s.) $\frac{3}{21}^{-}; \frac{1}{2}$ (g.s.)	$0.1498 \\ 0.1517$	$0.1052 \\ 0.0740$	$0.1375 \\ 0.1310$	0.1417 0.1379	0.0296(18) 0.0256(3)
$^{12}\mathrm{B}(\beta^{-})^{12}\mathrm{C}$	1+;1	$0_1^+;0$ (g.s.) $2_1^+;0$	0.5078 0.1038	0.4250 0.0979	0.4703 0.0990	0.4250 0.0954	0.5272(18) 0.0476(2)
$^{12}\mathrm{N}(\beta^+)^{12}\mathrm{C}$	1+;1	$0_1^+;0$ (g.s.) $2_1^+;0$	$0.5045 \\ 0.1045$	$0.3629 \\ 0.0875$	0.4272 0.0917	0.3488 0.0857	0.4682(31) 0.0435(8)
$^{13}{ m B}(eta^-)^{13}{ m C}$ $^{13}{ m O}(eta^+)^{13}{ m N}$	$\frac{3}{2}^{-}, \frac{3}{2}^{-}, 3$	$\frac{1}{2}_{1}^{-};\frac{1}{2} (g.s.)$ $\frac{1}{2}_{1}^{-};\frac{1}{2} (g.s.)$	0.767 0.752	0.6861 0.6095	$0.7206 \\ 0.6580$	0.7181 0.6609	0.5671(72) 0.5097(130)

B(GT)-values for mirror transitions in sd-shell nuclei

	$J^{\pi}_i; T_i$	$J_f^{\pi}; T_f$	INC + HO	IC + WS	INC + WS	(INC + WS)*	EXP
$^{17}{ m N}(eta^-)^{17}{ m O}$ $^{17}{ m Ne}(eta^+)^{17}{ m F}$	$\frac{1}{2}^{-}; \frac{3}{2}$ $\frac{1}{2}^{-}; \frac{3}{2}$	$\frac{3}{21}, \frac{1}{2}$ $\frac{3}{21}, \frac{1}{2}$ $\frac{3}{21}, \frac{1}{2}$	0.2079 0.1356	0.2333 0.2216	0.2021 0.1272	0.2023 0.1228	0.2342(89) 0.1632(50)
$^{20}{ m F}(eta^-)^{20}{ m Ne}$ $^{20}{ m Na}(eta^+)^{20}{ m Ne}$	$2^+;1 \\2^+;1$	$2^+_1; 0 \\ 2^+_1; 0$	0.0921 0.0935	0.0948 0.1098	0.0922 0.1085	0.0924 0.0914	0.0645(1) 0.0633(4)
$^{20}{ m O}(eta^-)^{20}{ m F}$ $^{20}{ m Mg}(eta^+)^{20}{ m Na}$	0+;2 0+;2	$1_1^+; 1$ $1_1^+; 1$	$0.9124 \\ 0.9120$	0.9571 0.9439	0.9183 0.9054	0.9031 0.9171	1.1166(48) 0.9445(666)
$^{28}{ m Al}(eta^-)^{28}{ m Si}^{28}{ m P}(eta^+)^{28}{ m Si}$	$3^+;1\ 3^+;1$	$2^+_1; 0 \\ 2^+_1; 0$	$0.1458 \\ 0.1449$	0.1444 0.1303	$0.1435 \\ 0.1287$		0.0825(1) 0.0870(9)
$^{31}\mathrm{Al}(eta^-)^{31}\mathrm{Si}$ $^{31}\mathrm{Ar}(eta^+)^{31}\mathrm{Cl}$	$\frac{5}{2}^+; \frac{5}{2}$ $\frac{5}{2}^+; \frac{5}{2}$	$rac{3}{2}rac{1}{1};rac{3}{2} \ (ext{g.s.}) \ rac{3}{2}rac{1}{1};rac{3}{2} \ (ext{g.s.})$	$0.2120 \\ 0.1947$	$0.2090 \\ 0.1958$	$0.2124 \\ 0.1827$		0.1049(122) 0.0788(53)
$^{35}{ m S}(eta^-)^{35}{ m Cl}$ $^{35}{ m K}(eta^+)^{35}{ m Ar}$	$\frac{3}{2}^+, \frac{3}{2}$ $\frac{3}{2}^+, \frac{3}{2}$	$\frac{3}{2}_{1}^{+};\frac{1}{2} \text{ (g.s.)}$ $\frac{3}{2}_{1}^{+};\frac{1}{2} \text{ (g.s.)}$	$0.0861 \\ 0.0846$	0.0870 0.0843	$0.0865 \\ 0.0824$		0.0588(2) 0.0496(84)
$^{35}{ m P}(eta^-)^{35}{ m S}$ $^{35}{ m Ca}(eta^+)^{35}{ m K}$	$\frac{1}{2}^+; \frac{5}{2}$ $\frac{1}{2}^+; \frac{5}{2}$	$\frac{1}{21}^+, \frac{3}{2}$ $\frac{1}{21}^+, \frac{3}{2}$	$0.9052 \\ 0.8572$	0.8572 0.7435	$0.8836 \\ 0.7257$	$0.8861 \\ 0.7458$	0.4591(70) 0.3891(154)

Asymmetry of mirror transitions

	A	Symm	ietry of	UIIII O	rtrans	ILIONS	
A	$J^{\pi}_i; T_i$	$J_f^{\pi}; T_f$	INC + HO	IC + WS	INC + WS	$(INC + WS)^*$	EXP
8	$2^+;1$	21;0	3.10	13.21	16.65	18.82	8.4 ± 1.8
9	$\frac{3}{2}^{-};\frac{3}{2}$	$\frac{3}{2}^{-}_{1}; \frac{1}{2}$ (g.s.)	-1.26	6.4	4.95	2.72	16 ± 8
12	$1^+;1$	$0_1^+;0$ (g.s.) $2_1^+;0$	$\begin{array}{c} 0.70 \\ -0.65 \end{array}$	9.4 8.45	10.09 7.92	21.85 11.33	12.6 ± 0.8 9.5 ± 1.9
13	$\frac{3}{2}^{-}; \frac{3}{2}$	$\frac{1}{21}$; $\frac{1}{2}$ (g.s.)	2.10	7.26	9.50	8.65	11.3 ± 3.2
17	$\frac{1}{2}^{-};\frac{3}{2}$	$\frac{3}{2}^{-}_{1}; \frac{1}{2}$	53.26	5.29	58.90	64.80	44 ± 7
20	0+;2	$1_1^+;1$	0.04	1.41	1.42	-1.53	18 ± 8
20(a)	$2^+;1$	$2^+_1;0$	-1.45	-13.64	-14.99	1.11	1.8 ± 0.7
21	$\frac{5}{2}^+; \frac{3}{2}$	$\frac{3}{2}\frac{1}{1}; \frac{1}{2}$ (g.s.)	-3.96	3.49	-0.56		
		$\frac{5}{2}\frac{+}{1}; \frac{1}{2}$	-1.71	2.35	0.60		
		$\frac{7}{2}\frac{1}{1}; \frac{1}{2}$	2.78	1.44	4.23		
25	$\frac{5}{2}^+; \frac{3}{2}$	$rac{5}{2}^+_1; rac{1}{2}$ (g.s.)	-1.09	2.24	1.11		
		$\frac{3}{2}\frac{+}{1}; \frac{1}{2}$	9.21	2.83	12.39		
		$\frac{7}{2}\frac{1}{1}; \frac{1}{2}$	7.76	3.83	11.23		
		$\frac{5}{22}^+; \frac{1}{2}$	-3.17	-2.52	-5.58		
28	$3^+;1$	$2^+_1;0$	0.61	10.85	11.54		-5 ± 1
31	$\frac{5}{2}^+; \frac{5}{2}$	$\frac{3}{2}\frac{1}{1}; \frac{3}{2}$ (g.s.)	8.88	6.72	16.27		33 ± 18
35	$\frac{3}{2}^+; \frac{3}{2}$	$\frac{3}{2}^+_1; \frac{1}{2}$ (g.s.)	1.82	3.13	4.96		18.4 ± 20.0
35	$\frac{1}{2}^+; \frac{5}{2}$	$\frac{1}{2}\frac{1}{1}^+; \frac{3}{2}$	5.59	15.28	21.75	18.81	18 ± 5

A our monotrue of mirror transitions

Conclusions and perspectives

A way to continue would be:

- Substitute WS wave functions by the Hartree-Fock wave functions
- Calculate corrections (electromagnetic, second-forbidden, ...)
- Evaluate J,L and extract limits on (ξ,λ) of the KDR model

However, it was not done due to following reasons:

- Reproduction of the data (μ ,Q) is within 10 –20%
- B(GT) values and asymmetry δ depend on the choice of the Hamiltonian and potential parameters
- Model restrictions (light nuclei, vicinity of the continuum,...)

Improvement in the theoretical description of nuclear states is required !

Correlation experiments could be more suitable in searches for g_{IT}