Trento, Fundamental Symmetries, 25.06.2007

High-precision mass measurements for nuclear structure and fundamental studies ... and more

Klaus Blaum: JoGu-University Mainz and GSI Darmstadt

Content

Motivation and history

Experimental setup and measurement procedure

High-precision mass measurements

High-precision *g*-factor measurements

Summary

The Helmholtz-Research-Group MATS

"Mass"-Team

- M. Dworschak (PhD), G. Eitel (Dipl.), R. Ferrer (PhD),S. George (PhD), J. Ketelaer (PhD), S. Nagy (PostDoc),D. Neidherr (PhD), J. Repp (Dipl.), Ch. Smorra (Dipl.)
- "g-Factor"-Team
- C. Haberkorn (ass.), S. Kreim (PhD), C. Rodegheri (PhD), S. Sturm (PhD), B. Schabinger (PhD), S. Ulmer (PhD)

In collaboration with:

H.-J. Kluge, H. Kracke, M. Kretzschmar, W. Quint, L. Schweikhard, S. Stahl, J. Walz, G. Werth and the ISOLTRAP team

Part I

High-precision mass measurements

Requirements for mass spectrometry

High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

\frown	K. B., Phys. Rep. 425, 1-78 (2006)	δm/m	
	General physics & chemistry	≤ 10 -5	
1	Nuclear structure physics - separation of isobars	≤ 10 -6	- Z · 🜔
	Astrophysics - separation of isomers	≤ 10 -6	/
•	Weak interaction studies	≤ 10 ⁻⁸	
	Metrology - fundamental constants	≤ 10 ⁻⁹	
B(Z,N	CPT tests	≤ 10 ⁻¹⁰]· <i>c</i> ²
	QED in highly-charged ions	≤ 10 ⁻¹¹	
	- separation of atomic states		

Requirements for mass spectrometry

High-accuracy mass measurements allow one to determine the atomic and nuclear binding energies reflecting all forces in the atom/nucleus.

K. B., Phys. Rep. 425, 1-78 (2006)	δm/m
General physics & chemistry	≤ 10 ⁻⁵
Nuclear structure physics	≤ 10 -6
- separation of isobars	
Astrophysics	≤ 10 -6
- separation of isomers	
Weak interaction studies	≤ 10 ⁻⁸
Metrology - fundamental constants	≤ 10 ⁻⁹
CPT tests	≤ 10 ⁻¹⁰
QED in highly-charged ions	≤ 10 -11
- separation of atomic states	

Precision: A brief history of mass spectrometry

 $m(^{28}Si)= 27.976 \ 926 \ 532 \ 6 \ u$ $\delta m = 0.000 \ 000 \ 001 \ 9 \ u$ Rel. Precision = 6x10⁻¹¹

SMILETRAP, MIT-TRAP (now at FSU), Seattle-TRAP, Mainz-TRAP

www.quantum.physik.uni-mainz.de/mats/

Distance Mainz-Trento 800km ± 0.05mm

CPT, ISOLTRAP, JYFLTRAP, LEBIT, SHIPTRAP

Principle of Penning trap mass spectrometry

Cyclotron frequency:

$$f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$

PENNING trap

- Strong homogeneous magnetic field
- Weak electric 3D quadrupole field

Typical frequencies q = e, m = 100 u, B = 6 T $\Rightarrow f_{-} \approx 1 \text{ kHz}$ $f_{+} \approx 1 \text{ MHz}$

Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

Time-of-flight mass spectrometry

TOF cyclotron resonance curve

Measurement time: between 15 min and 4 h with ~50-100 ions/s

Determine atomic mass from frequency ratio

with a well-known "reference mass".

$$\frac{f_{\rm c,ref}}{f_{\rm c}} = \frac{m - m_e}{m_{\rm ref} - m_e}$$

The Ramsey excitation technique

www.guantum.physik.uni-mainz.de/mats/

Triple-trap mass spectrometer ISOLTRAP

www.quantum.physik.uni-mainz.de/mats/

Resolution and isolation of nuclear isomers

fexc - 1338940 (Hz)

<u>Isobaric Multiplet Mass Equation</u>

Mass formula for multiplets of nuclear states with same mass and isospin

$$M = a + bT_z + cT_z^2 + dT_z^3$$

Commonly used
quadratic form

$$T_{z} = \frac{3}{2} + \frac{7}{2} + \frac{3}{2} + \frac{3}{2$$

A = 33 T = 3/2 quartet:

Most stringent test of IMME (with ^{32,33}Ar)

K. B. et al., Phys. Rev. Lett. 91, 260801 (2003).

quintet:

d = -0.13(45) keV

d = -0.11(30) keV

New status: ISOLTRAP measurements 2002: $- {}^{33}$ Ar with u(m) = 0.44 keV A = 33, T = 3/2 quartet: $- {}^{32}$ Ar with u(m) = 1.8 keVA = 32, T = 2

Determination of the ${}^{3}T \rightarrow {}^{3}He$ Q-Value

m(⁴He) = 4.002 603 254 153 (64) u R.S. Van Dyck *et al.*, Phys. Rev. Lett. 92 (2004) 220802

www.quantum.physik.uni-mainz.de/mats/

Counts

Recent results of fundamental studies

Population inversion of nuclear states and nuclear structure studies:

J. Van Roosbroeck *et al.*, Phys. Rev. Lett. 92, 1112501 (2004) K. Blaum *et al.*, Europhys. Lett. 67, 586 (2004) Sz. Nagy *et al.*, Phys. Rev. Lett. 96, 163004 (2006) C. Rauth *et al.*, Phys. Rev. Lett., submitted (2007)

Why are there elements heavier than iron?

D. Rodríguez *et al.*, Phys. Rev. Lett. 93, 161104 (2004) M. Mukherjee *et al.*, Phys. Rev. Lett. 93, 150801 (2004)

Are there scalar currents present in the Weak Interaction?

F. Herfurth *et al.*, Phys. Rev. Lett. 87, 142501 (2001) K. Blaum *et al.*, Phys. Rev. Lett. 91, 260801 (2003)

V_{ud} – is unitarity violated in quark mixing?

F. Herfurth *et al.*, Eur. Phys. J. A 15, 17 (2002) A. Kellerbauer *et al.*, Phys. Rev. Lett. 93, 072502 (2004) M. Mukherjee *et al.*, Phys. Rev. Lett. 93, 150801 (2004)

S. George et al. Phys. Rev. Lett. 98, 162501 (2007)

Part II

High-precision *g*-factor measurements

The g – factor

free lepton: $g_s = g$ -factor of the spin

g-factor of the proton and the antiproton

Test of CPT invariance

- CPT $|\psi\rangle$: Reversal of space, charge, and time
- Currently believed to hold
- CPT transforms particle into its antiparticle (P. Dirac 1928)

PDG: $g_p = 2 \times 2.792847337(29)$ $g_p = 2 \times 2.800(8)$ $\vec{B} \rightarrow \vec{\mu} \rightarrow \vec{\mu}$ $\vec{\mu} = g_p \cdot \frac{|\vec{s}|}{\hbar}$ $\vec{h} \omega_L$ Proton $\vec{\mu}$ $\vec{\mu} = g_p \cdot \frac{|\vec{s}|}{\hbar}$

Measurement principle for a proton

Measurement of the Lamor frequency

spin-flips result in measurable axial frequency jumps

Status of the (anti)proton g-factor experiment

Hybrid analysis trap

Manufactured at the Institute for <u>M</u>icrotechnique <u>M</u>ainz (IMM).

J. Verdú et al., AIP Conference Proceedings 796, 260-265 (2005)

Summary

High-accuracy experiments with stored ions in Penning traps have a broad range of applications!

- Fundamental tests:
 - Unitarity test of the CKM matrix: [Hardy & Towner, PRL 94, 092502 (2005)] $\delta m/m < 10^{-8}$ for short-lived radionuclides ($T_{1/2} < 100$ ms)
 - Test of $E=mc^2$: [S. Rainville et al., Nature 438, 1096 (2005)] $\delta m/m < 10^{-10}$ for ³²S, ³³S
 - Test of CPT invariance: [G. Gabrielse et al., PRL 82, 3198 (1999)] $\delta g/g < 10^{-9}$ for proton and antiproton
 - Test of bound-state QED [J. Verdú et al. PRL 92, 093002 (2004)] $\delta g/g < 10^{-9}$ for hydrogen-like highly-charged ions
- Fundamental constants: $m_{\rm e}$, $m_{\rm p}$, α , N_ah , μ , ... [G. Gabrielse et al., PRL 97, 030802 (2006)]

Thanks a lot for your attention.

Email: blaumk@uni-mainz.de

www.quantum.physik.uni-mainz.de/en/mats