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T Violation and Atomic EDMs

Theorem ( T/EDM Connection)
Nondegenerate states have static electric dipole moments iff T and P
are violated.

Handwaving Proof More details .

Lack of degeneracy implies 〈~d〉 ∝ 〈~J〉 with same
proportionality constant in each M substate. But 〈~J〉 and 〈~d〉
transform oppositely under time reversal of operators and state
(M −→ −M) if T is conserved. So if T is a good symmetry, the
state cannot have an EDM. If not, the state will have one.

Of course, T = CP .
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EDMs Sensitive to New Physics

In standard model only one phase. Diagrams cancel to high
order, e.g.:

+ ...i sinδ
f fW

γ
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γ
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−i sin +δ

SUSY has many phases. Low-order diagrams uncanceled, e.g.:

e iθf f

γ

f
~

Thus, EDMs are insensitive to standard-model CP but
sensitive to extra-standard-model CP . Limits from atoms
and neutrons, have already made SUSY a difficult proposition.
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How Do Things Get EDMs?

Starting at most fundamental level and moving up:

Underlying
fundamental theory
generates three
T -violating πNN
vertices:

Then neutron gets EDM
from diagrams like this:

N g
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π
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How Do Atoms Get EDMs?

Nucleus can get one from
nucleon EDM or
T-violating NN interaction:

g
_
N

π
N

...
γ

N...
g

W ∝
{[

ḡ0τ1 · τ2 −
ḡ1

2
(τz

1 + τz
1 ) + ḡ2 (3τz

1 τz
2 − τ1 · τ2)

]
(σ1 − σ2)

− ḡ1

2
(τz

1 − τz
2 ) (σ1 + σ2)

}
· (∇1 −∇2)

exp (−mπ|r1 − r2|)
mπ|r1 − r2|

Finally, atom gets one from nucleus. Electronic shielding makes the
relevant nuclear object the “Schiff moment”

〈~S〉 ≈ 〈 ∑p

(
~rp − 1

Z
~D
)2 (

~rp − 1
Z
~D
)
〉

rather than dipole
moment 〈~D〉 ≡ 〈∑p~rp〉.

Nuclear-structure theory’s place in the chain: calculat-
ing dependence of 〈~S〉 on the ḡ’s in heavy nuclei.
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ḡ1

2
(τz

1 + τz
1 ) + ḡ2 (3τz
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State of Art in Heavy Nuclei

Hartree-Fock-Bogoluiobov calcualations with
phenomenological density-dependent Skyrme interaction

HSk = b0 (1 + x0P̂σ) δ(r1 − r2)
+b1 (1 + x1P̂σ)

[
(∇1 −∇2)2δ(r1 − r2) + h.c .

]
+b2 (1 + x2P̂σ) (∇1 −∇2) · δ(r1 − r2)(∇1 −∇2)

+b3 (1 + x3P̂σ) δ(r1 − r2)ρα(
r1 + r2

2
)

+ib4 (σ1 + σ2) · (∇1 −∇2)× δ(r1 − r2)(∇1 −∇2) ,

where
P̂σ =

1 + σ1 · σ2

2
,

bi , xi , α adjusted to fit masses, radii, etc.

Corrections to HFB are the frontier.
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EDM Work Thus Far

In normal (non-octupole-deformed) nuclei, e.g., 199Hg , the
best work has been approximations to HFB with

H ≈ HSk+ W

T -violating interaction

This is tough. J.H. de Jesus’s calculation in 199Hg got close by
assuming a spherical nucleus and doing Skyrme-HFB in 198Hg,
then adding polarizing effects of last neutron.

A. Shukla is using HFODD to do fully self-consistent calculation
with deformation.

In octupole-deformed-nuclei, where Schiff moments are
enhanced, treating W as an explicit perturbation is easier.
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Constructing Good Skyrme Interaction

W probes spin density.
Interaction should have good
spin response. M. Bender et
al. fit some time-odd terms of
SkO’ to Gamow-Teller
resonance energies and
strengths.

8/18



Testing SkO’ and other Skyrme interactions

Strength
distribution of
isoscalar analog of
Schiff operator
measured in 208Pb.

How do Skyrme
interactions do?
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Results in 199Hg J.H. de Jesus and J.E.

This is the nucleus with the best experimental limit.

〈Sz 〉Hg ≡ a0 gḡ0 + a1 gḡ1 + a2 gḡ2 (e fm3)

a0 a1 a2

SkM? 0.009 0.070 0.022
SkP 0.002 0.065 0.011
SIII 0.010 0.057 0.025
SLy4 0.003 0.090 0.013

SkO′ 0.010 0.074 0.018

Dmitriev and Senkov 0.0004 0.055 0.009

(1)

Is the spread a measure of uncertainty? Hard to know without
intense focus on Skyrme functionals and related obervables.
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Nuclear Deformation
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Schiff Moment with Octupole Deformation

Here we need to treat W as explicit
perturbation:

〈~S〉 = ∑
m

〈0|~S |m〉〈m|W |0〉
E0 − Em

+ c .c .

where |0〉 is unperturbed ground state. Calculated 225Ra density

Ground state has nearly-dengerate partner |0̄〉 with same
opposite parity and same intrinsic structure, so:

〈~S〉 −→ 〈0|~S |0̄〉〈0̄|W |0〉
E0 − E0̄

+ c .c . ∝
〈~S〉intr.〈W 〉intr.

E0 − E0̄

〈~S〉 is large because 〈~S〉intr. is collective and E0 − E0̄ is small.
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Spectrum of 225Ra

13/18



Testing Skyrme Interactions Again

Binding and Separation Energies

Single-Particle Energies
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More Interaction Testing. . .

Octupole, Dipole, Schiff Stuff . . .
. . .

15/18



225Ra Results

Hartree-Fock calculation (Dobaczweski et al.) with SkO’ gives

〈Sz 〉Ra = −1.5 gḡ0 + 6.0 gḡ1 − 4.0 gḡ2 (e fm3)

Larger by over 100 than in 199Hg!

But “uncertanty” (i.e. variation) similar.

What can we do to reduce it?
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The Future

Can improve calculations in all heavy nuclei via

More exact Schiff operator
Parity- and angular-momentum projection
particle-hole correlations

But, as in ββ decay, uncertainties may not shrink much.
Spin-dependent two-body operators for which no data exist
pose problems because

The operators are two-body and spin-dependent
There are no data
Skyrme interactions are limited.
Need more related data: isoscalar-dipole distributions,
spin-multipole distributions,. . . (like in ββ)
Underlying theory of heavy nuclei still needs work.

Reducing uncertainty for Schiff, ββ. . . will take concerted effort
of more than a few people!

Is it worthwhile? Can we do it?
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What Do EDMs Have to Do With T

Consider nondegenerate ground state |g.s. : J,M〉. Symmetry

under rotations Ry (π) for vector operator like ~d ≡ ∑i ei~ri ,

〈g.s. : J,M | ~d |g.s. : J,M〉 = −〈g.s. : J,−M |~d |g.s. : J,−M〉 .

R−1RT takes M to −M , like Ry (π). But~d is odd under Ry (π) and
even under T , so for T conserved

〈g.s. : J,M | ~d |g.s. : J,M〉 = +〈g.s. : J,−M |~d |g.s. : J,−M〉 .

T−1T

Together with the first equation, this implies

〈~d〉 = 0 .

If T is violated, argument fails because T can take |g.s. : JM〉 to
|ex. : J,−M〉, a state in a different multiplet. Return
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Shielding by Electrons

Unfortunately for atomic experiments:

Theorem (Schiff)
The nuclear dipole moment causes the atomic electrons to rearrange
themselves so that they develop a dipole moment opposite that of the
nucleus. In the limit of nonrelativistic electrons and a point nucleus
the electrons’ dipole moment exactly cancels the nuclear moment, so
that the net atomic dipole moment vanishes!
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Shielding by Electrons

Proof

Consider atom with nonrelativistic constituents (with dipole
moments~dk ) held together by electrostatic forces. The atom has

a “bare” edm ~d ≡ ∑k
~dk and a Hamiltonian

H = ∑
k

p2
k

2mk
+ ∑

k

V (~rk) −∑
k

~dk ·~Ek

= H0 + ∑k(1/ek)~dk · ~∇V (~rk)

= H0 + i ∑
k

(1/ek)
[
~dk ·~pk ,H0

]

K.E. + Coulomb dipole perturbation
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Shielding by Electrons

The perturbing Hamiltonian

Hd = i∑
k

(1/ek)
[
~dk ·~pk ,H0

]
shifts the ground state |0〉 to

|0̃〉 = |0〉+ ∑
m

|m〉〈m|Hd |0〉
E0 − Em

= |0〉+ ∑
m

|m〉〈m|i ∑k(1/ek)~dk ·~pk |0〉(E0 − Em)
E0 − Em

=

(
1 + i∑

k

(1/ek)~dk ·~pk

)
|0〉
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Shielding by Electrons

The induced dipole moment~d ′ is

~d ′ = 〈0̃|∑
j

ej~rj |0̃〉

= 〈0|
(
1− i ∑k(1/ek)~dk ·~pk

) (
∑j ej~rj

)
×
(
1 + i ∑k(1/ek)~dk ·~pk

)
|0〉

= i〈0|
[
∑j ej~rj , ∑k(1/ek)~dk ·~pk

]
|0〉

= − 〈0|∑
k

~dk |0〉 = −∑
k

~dk

= −~d

So the net EDM is zero!
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