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Theorem ( T/EDM Connection)
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Nondegenerate states have static electric dipole moments iff T and P
are violated.

Handwaving Proof (> More details )

Lack of degeneracy implies (d) o (J) with same
proportionality constant in each M substate. But (J) and (d)
transform oppositely under time reversal of operators and state
(M — —M) if T is conserved. So if T is a good symmetry, the
state cannot have an EDM. If not, the state will have one. []

Of course, /T/ = % . I







der diagrams uncanceled, e.g.:
y




der diagrams uncanceled, e.g.:
y

Thus, EDMs are insensitive to standard-model /QF{ but

sensitive to extra-standard-model /QF{ . Limits from atoms
and neutrons, have already made SUSY a difficult proposition.
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W { [goﬁ STy — % (f+%)+8 B —7n -Tz)] (01— 02

exp (—mx|r1 —r2|)
mn|l'1 - I’2| J

B (17— 5) (o0 + m)} (Vi— V)

one from nucleus. Electronic shielding makes the
ear object the “Schiff moment”

. S\ 2 . rather than dipole
N L1 > 1 %
(5) = { Lo (rp_7D> <rP—7D> ) moment (D) = (¥, 7).

Nuclear-structure theory’s place in the chain: calculat-
ing dependence of (S) on the g’s in heavy nuclei.
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Skyrme interaction
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Skyrme interaction

( d(ry —r2)
( ) [(V1—V2)%5(r1 —r2) + h.c.]
+by (14 x0P,) (V1—V2)-8(r — ) (Vi — Va)
( )

+
5(r —r2)p* ()

+ibg ((71 T 0’2) o (Vl = Vz) X 5(r1 — rz)(Vl - V2) ,

N 140102
U’ - T 1
bi, x;, « adjusted to fit masses, radii, etc.

Corrections to HFB are the frontier.
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#S s calculation in 1°Hg got close by
# nucleus and doing Skyrme-HFB in 1%Hg,
pOlarizing effects of last neutron.
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T-violating interaction

s calculation in ***Hg got close by
# nucleus and doing Skyrme-HFB in 1%Hg,
pOlarizing effects of last neutron.

la is using HFODD to do fully self-consistent calculation
ith deformation.

In octupole-deformed-nuclei, where Schiff moments are
enhanced, treating W as an explicit perturbation is easier.
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(Sz)Hg = a0 880+ a1 881 + a2 &2 (e fm?)
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(Sz>Hg = a0 880 + a1 881 + a2 g&» (e fm3)

az

SkM* 0.009 0.070 0.022
SkP 0.002 0.065 0.011
SIIT 0.010 0.057 0.025
SLy4 0.003 0.090 0.013
SkO’ 0.010 0.074 0.018
Dmitriev and Senkov  0.0004 0.055 0.009
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(SZ>Hg = a0 880 + a1 881 + a2 g&» (e fm3)

az

SkM* 0.009 0.070 0.022
SkP 0.002 0.065 0.011
SIII 0.010 0.057 0.025 (1)
SLy4 0.003 0.090 0.013
SkO/ 0.010 0.074 0.018

Dmitriev and Senkov  0.0004 0.055 0.009

Is the spread a measure of uncertainty? Hard to know without
intense focus on Skyrme functionals and related obervables.
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Calculated ?*5Ra density
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Calculated 2*5Ra density

¥engerate partner |0) with same
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0[S|m) {m|W/|0)

E —E, +c.c.

Calculated ?*>Ra density

¥engerate partner |0) with same
ame intrinsic structure, so:

2 (015]0) (0] w/o) (S)intr. (W ins,

(S) is large because (S)iny. is collective and Ey — Ey is small.
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Octupole, Dipole, Schiff Stuff

128 132 136 140
Neutron Number N
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(S;)Ra = —15g8 +6.0g8 —40gz (efm?)

Larger by over 100 than in 1%Hg!
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(S;)Ra = —15g8 +6.0g8 —40gz (efm?)

Larger by over 100 than in 1%Hg!

(i.e. variation) similar. @

What can we do to reduce it?
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which no data exist
y and spin-dependent

actions are limited.
ore related data: isoscalar-dipole distributions,
®1in-multipole distributions,. .. (like in B)
Underlying theory of heavy nuclei still needs work.

Reducing uncertainty for Schiff, ... will take concerted effort
of more than a few people! Is it worthwhile? Can we do it?
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Wi under Ry (7r) and
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Wi under Ry (7r) and
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With the first equation, this implies
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: M) = —(gs.: J,—M|d|gs.: J, —M) . J

Wi under Ry (7r) and

: M) = +(gs.: J,—M|d|gs.: J, —M) . J

With the first equation, this implies

(dy=0.

If T is violated, argument fails because T can take |g.s. : JM) to
lex. : J, —M), a state in a different multiplet.
16/18



17/18

Theorem (Schiff)

The nuclear dipole moment causes the atomic electrons to rearrange
themselves so that they develop a dipole moment opposite that of the
nucleus. In the limit of nonrelativistic electrons and a point nucleus
the electrons” dipole moment exactly cancels the nuclear moment, so
that the net atomic dipole moment vanishes!
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— Ho + Y (1/ex)di - VV ()

K.E. + Coulomb dipole perturbation
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— Ho + Y (1/ex)di - VV ()

= Ho +iY (1/e) [ak * Pk, Ho]
%

K.E. + Coulomb dipole perturbation
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Hg = i) (1/ex) [ak “ Pk Ho]
p

i di - B|0) (Eo — Epm
- |o>+z|m><m| Ek(l/zs)ikampH ) (Eo )

= (1 +iY (1/ex)d - ﬁk) |0)
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d = (01y_¢70)
J

(ol (1= iZu(1/e0)d-Bi) (T 4)
x (14 5(1/ex)de B ) [0)
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d = (01y_¢70)
J

= (0 (1 imu(t/e)dBr) (%e7)
X (1+i2k(1/ek)3k'l3k) |0)

= i{0] | &7 Zic(1/ )k - B 10)

- — (O oy = - Y
k k

-

= —d

So the net EDM is zero! J
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