Test of time reversal invariance and low energy nuclear reactions

Vladimir Gudkov
University of South Carolina
June 28, 2007

Motivation

- CPT \rightarrow CP ~ T independent test (for the case of suppression/cancelation)
- CPT-violation:

T and CP are "independent"
problems with the standard field theory \rightarrow even less trusted relations between different processes

T-Reversal Invariance

$$
\begin{gathered}
a+A \rightarrow b+B \\
\vec{k}_{i, f} \rightarrow-\vec{k}_{f, i} \text { and } \vec{s} \rightarrow-\vec{s}
\end{gathered}
$$

$$
\left\langle\vec{k}_{f}, m_{b}, m_{B}\right| \hat{T}\left|\vec{k}_{i}, m_{a}, m_{A}>=(-1)^{\sum_{i} s_{i}-m_{i}}<-\vec{k}_{i},-m_{a},-m_{A}\right| \hat{T} \mid-\vec{k}_{f},-m_{b},-m_{B}>
$$

Detailed Balance Principle (DBP):

$$
\frac{\left(2 s_{a}+1\right)\left(2 s_{A}+1\right)}{\left(2 s_{b}+1\right)\left(2 s_{B}+1\right)} \frac{k_{i}^{2}}{k_{f}^{2}} \frac{(d \sigma / d \Omega)_{i f}}{(d \sigma / d \Omega)_{f i}}=1
$$

DBP test:

- ${ }^{24} \mathrm{Mg}+\alpha \leftrightarrow{ }^{27} \mathrm{Al}+p$
(with the intermediate compound nuclear state ${ }^{28} \mathrm{Si}$ excited up to $E^{\star} \sim 19 \mathrm{MeV}$)

$$
|\mathrm{F}|<2 \cdot 10^{-3} \quad(\text { E. Burke, 1983 })
$$

- ${ }^{24} M g+d \leftrightarrow{ }^{25} M g+p$

$$
|\mathrm{F}|<2 \cdot 10^{-3} \quad(\text { D. Bodansky,, 1968) }
$$

Ericson fluctuations

$$
\begin{gathered}
|F| \sim \frac{\left|S_{a s y m}\right|}{\left|S_{s y m}\right|} \\
S_{a s y m} \sim \sum_{c}\left\{\gamma^{\prime} \frac{1}{\Delta_{c}} \gamma+\gamma \frac{1}{\Delta_{c}} \gamma^{\prime}+\gamma^{\prime} \frac{1}{\Delta_{c^{\prime}}} w \frac{1}{\Delta_{c}} \gamma\right\}
\end{gathered}
$$

Asymmetry Theorem:

$$
\vec{A}_{a}=\frac{3 s_{b}}{s_{b}+1} \vec{P}_{b}
$$

Proton-proton scattering ($E=198.5 \mathrm{MeV}$)

$$
|\mathrm{F}|<2.6 \cdot 10^{-3} \quad \text { (C. A. Davic, 1986) }
$$

Correlations in γ-decay transitions:

$$
\begin{gathered}
(\vec{J}[\vec{k} \times \vec{\varepsilon}])(\vec{J} \vec{k})(\vec{J} \vec{\varepsilon}) \quad E_{\gamma}=122 \mathrm{KeV} \text { for }{ }^{57} \mathrm{Fe}(F . \text { Boehm, 1979) } \\
\sin \eta=(3.1 \pm 6.9) \cdot 10^{-4}
\end{gathered}
$$

Mössbauer's thransitions (V. G. Tsinoev, 1982)

$$
\sin \eta=(-3.3 \pm 6.6) \cdot 10^{-4}
$$

Statistical properties of compound nuclei

- T-invariant \rightarrow Gauss Orthogonal Ensemble of random matrices \rightarrow Wigner linear repulsion:

$$
p(\varepsilon) \sim \varepsilon
$$

- Violation of T-invariance \rightarrow Unitary Ensemble of random matrices :

$$
\begin{gathered}
p(\varepsilon) \sim \varepsilon^{2} \\
E_{ \pm}=\frac{1}{2}\left(H_{11}+H_{22}\right) \pm \frac{1}{2} \sqrt{\left(H_{11}-H_{22}\right)^{2}+4 H_{12}^{2}+H_{T}^{2}}
\end{gathered}
$$

$1.7 \cdot 10^{3}$ levels results in $<10^{-3}$

T-odd correlations in β-decay

Neutron:
$D=(-1.1+/-1.7) 10^{-3} \quad(R . I$. Steinberg, 1974)
$D=(2.2+/-3.0) 10^{-3} \quad$ (B. G. Erozolimsky, 1978)
$D=\left(-0.6+/-1.2(\right.$ stat $)+/-0.5($ syst) $) 10^{-3} \quad($ The emiT Collab., 2000)
$D=(-2.8+/-6.4($ stat $)+/-3.0($ syst $)) 10^{-4} \quad(T$. Soldner, 2004)
${ }^{19} \mathrm{Ne}:$
$D=(0.4+/-0.8) 10^{-3} \quad($ A. L. Hallin, 1984)

High Energy Physics with Low Energy Neutrons

HEP:

FNP:

$\Delta E / E \rightarrow 0$

High Energy Physics with Low Energy Neutrons

Neutron Reactions

- Neutron Energy 0.01 - 100 eV
- Nuclear Excitation Energy 6-7 MeV \Rightarrow Energy resolution 10^{-9}
- Flux
\Rightarrow precision
- Polarization
- Low Energy enhancement Complex nuclear system by 10^{6}
- RELATIVE Measurements \& MANY Targets
- The possibility to eliminate Theoretical uncertainties
\Rightarrow Symmetry Tests \& Fundamental Constants

Neutron transmission

- P- and T-violation: $\vec{\sigma}_{n} \cdot[\vec{k} \times \vec{I}]$

Enhanced of about 10^{6}

- T-violation: $\quad\left(\vec{\sigma}_{n} \cdot[\vec{k} \times \vec{I}]\right)(\vec{k} \cdot \vec{I})$
(for 2 MeV , on ${ }^{165} \mathrm{Ho}:<5 \cdot 10^{-3}, \quad$ J. E. Koster, 1991)
"phase-shift"
(<10-2, E. D. Davis, 2005)

Important features:

- Large enhancement factor (~106)
- No FSI
- Reasonably simple theoretical descriptions (relative effects)
- New facilities with large fluxes will be available soon

FSI

$$
T^{+}-T=i T T^{+}
$$

in the first Born approximation T-is hermitian

$$
<i|T| f>=<i\left|T^{*}\right| f>
$$

\oplus T-invariance $\Rightarrow<f|T| i\rangle=<-f|T|-i>^{*}$

$$
\Rightarrow|<f| T\left|i>\left.\right|^{2}=|<-f| T\right|-i>\left.\right|^{2}
$$

then the probability is even function of time.

For elastic scattering at the zero angle: " $i=\equiv " f$ ", then always "T-odd correlations" = "T-violation"

P- and T-violation in Neutron transmission

$$
\Delta \sigma_{T} \sim \vec{\sigma}_{n} \cdot[\vec{k} \times \vec{I}] \sim \frac{W \sqrt{\Gamma_{s}^{n} \Gamma_{p}^{n}(s)}}{\left(E-E_{s}+i \Gamma_{s} / 2\right)\left(E-E_{p}+i \Gamma_{p} / 2\right)}\left[\left(E-E_{s}\right) \Gamma_{p}+\left(E-E_{p}\right) \Gamma_{s}\right]
$$

$$
\Delta \sigma_{T} / \Delta \sigma_{P} \sim \lambda=\frac{g_{T}}{g_{P}}
$$

Theoretical predictions

Model	λ
Kobayashi - Maskawa	$\leq 10^{-10}$
Right - Left	$\leq 4 \times 10^{-3}$
Horizontal Symmetry	$\leq 10^{-5}$
Weinberg (charged Higgs bosons)	$\leq 2 \times 10^{-6}$
Weinberg (neutral Higgs bosons)	$\leq 3 \times 10^{-4}$
θ-term in QCD Lagrangian	$\leq 5 \times 10^{-5}$
Neutron EDM (one π-loop mechanism)	$\leq 4 \times 10^{-3}$
Atomic EDM $\left({ }^{199} \mathrm{Hg}\right)$	$\leq 2 \times 10^{-3}$

$$
\lambda=\frac{g_{C P}}{\sigma} \quad g_{P}=? ? ? \quad \Rightarrow \quad \mathrm{n}+\mathrm{p} \rightarrow d+\gamma
$$

Simple systems: n-d

$\left(\vec{\sigma}_{n} \cdot[\vec{k} \times \vec{I}]\right)(\vec{k} \cdot \vec{I}) \quad\left\{{ }^{3} S_{1}(T=0) \leftrightarrow{ }^{3} D_{1}(T=0),{ }^{3} P_{1}(T=1) \leftrightarrow{ }^{1} P_{1}(T=0)\right\}$
$\Delta \sigma_{T}=\frac{4 \pi}{k} \operatorname{Im}\left\{\Delta f_{T}\right\} \quad$ and $\quad \frac{d \psi}{d z}=\frac{2 \pi N}{k} \operatorname{Re}\left\{\Delta f_{T}\right\}$
$\Delta \sigma_{T}=-\frac{40 \pi}{3} g_{A} g_{T} \frac{\left(\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}\right) \alpha_{k^{2}} k^{2}}{\left(\alpha_{\mathrm{t}}^{2}+k^{2}\right)^{2}\left(\alpha_{\mathrm{s}}^{2}+k^{2}\right)} \sim-3.5 \times 10^{-4} g_{T} E_{\text {eV }}$ (barn)
$\frac{d \psi}{d z}=\frac{8 \pi N}{3} g_{A} g_{T} \frac{\left(\alpha_{\mathrm{s}}+\alpha_{\mathrm{t}}\right) \alpha_{\mathrm{s}} \alpha_{\mathrm{t}} k^{2}}{\left(\alpha_{\mathrm{t}}^{2}+k^{2}\right)^{2}\left(\alpha_{\mathrm{s}}^{2}+k^{2}\right)} \sim 10^{-3} g_{T} \sqrt{E_{\text {eV }}}\left(\frac{\mathrm{rad}}{\mathrm{cm}}\right)$

Conclusions

- For T-violating P-conserving interactions the current limit could be easily improved by about of 2-3 orders of magnitude
- For T-violating P-violating interactions it may be possible to reach $\lambda \sim 10^{-4}-10^{-5}$
- New possibilities for search for new physics - why miss the opportunity?

