Measurement of the Weinberg angle with low-energy beta-beams

João H. de Jesus

University of Wisconsin-Madison, U.S.A.

International Workshop on Fundamental Symmetries: From Nuclei and Neutrinos to the Universe
ECT* Trento, Italy, June 27, 2007
1. The beta-beam concept

2. Low-energy beta-beams

3. Measuring the Weinberg angle at low-energy beta-beams

4. Conclusions
Outline

1. The beta-beam concept
2. Low-energy beta-beams
3. Measuring the Weinberg angle at low-energy beta-beams
4. Conclusions
1. The beta-beam concept
2. Low-energy beta-beams
3. Measuring the Weinberg angle at low-energy beta-beams
4. Conclusions
1. The beta-beam concept
2. Low-energy beta-beams
3. Measuring the Weinberg angle at low-energy beta-beams
4. Conclusions
The beta-beam concept

Pure, collimated, well-known neutrino fluxes can be obtained by boosted ions decaying through beta-decay
The beta-beam concept

Strong synergy with EURISOL Use CERN existing accelerator
Need for a decay ring

João H. de Jesus

Weinberg angle at low-energy beta-beams
The beta-beam concept

Strong synergy with EURISOL

Use CERN existing accelerator

Need for a decay ring
The beta-beam concept

Strong synergy with EURISOL Use CERN existing accelerator

Need for a decay ring
The beta-beam concept

Strong synergy with EURISOL Use CERN existing accelerator
Need for a decay ring
The beta-beam concept

440 kton H_2O Čerenkov detector to study CP and T violation through ν oscillations...
... but also supernova neutrinos and proton decay.
440 kton H_2O Čerenkov detector to study CP and T violation through ν oscillations...

... but also supernova neutrinos and proton decay.
The beta-beam concept

440 kton H_2O Čerenkov detector to study CP and T violation through ν oscillations...
... but also supernova neutrinos and proton decay.
CP-violation phase and θ_{13}

Explore $\theta_{13} \sim 1^\circ$ and $\delta \sim 20^\circ$.

Different regimes

- Standard $\gamma = 100$
- High-energy $\gamma \gg 100$
- Low-energy $\gamma = 5 - 14$

M. Mezzetto, Talk at NUFACT05, June 2005, Rome
The beta-beam concept

CP-violation phase and θ_{13}

Explore $\theta_{13} \sim 1^\circ$ and $\delta \sim 20^\circ$.

Different regimes

- Standard $\gamma = 100$
- High-energy $\gamma \gg 100$
- Low-energy $\gamma = 5 - 14$

M. Mezzetto, Talk at NUFAC05, June 2005, Rome
The beta-beam concept

CP-violation phase and θ_{13}

Explore $\theta_{13} \sim 1^\circ$ and $\delta \sim 20^\circ$.

Different regimes

- Standard $\gamma = 100$
- High-energy $\gamma \gg 100$
- Low-energy $\gamma = 5 - 14$

M. Mezzetto, Talk at NUFACT05, June 2005, Rome
The beta-beam concept

CP-violation phase and θ_{13}

Explore $\theta_{13} \sim 1^\circ$ and $\delta \sim 20^\circ$.

Different regimes

- **Standard** $\gamma = 100$
- **High-energy** $\gamma >> 100$
- **Low-energy** $\gamma = 5 - 14$

M. Mezzetto, Talk at NUFACT05, June 2005, Rome
The beta-beam concept

CP-violation phase and θ_{13}

Explore $\theta_{13} \sim 1^\circ$ and $\delta \sim 20^\circ$.

Different regimes

- Standard $\gamma = 100$
- High-energy $\gamma \gg 100$
- Low-energy $\gamma = 5 - 14$

M. Mezzetto, Talk at NUFAC05, June 2005, Rome

João H. de Jesus

Weinberg angle at low-energy beta-beams
Low-energy beta-beams

Ions accelerated in PS
($\gamma = 5 - 14$)

Small ($L_{SS} \sim 700$ m) storage ring

Near (~ 10 m) 1 kton H_2O

Čerenkov detector

$^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e$:
(ν_e, e^-) scattering
(ν_e, ^{16}O) capture

$^{6}\text{He} \rightarrow ^{6}\text{Li} + e^- + \bar{\nu}_e$
($\bar{\nu}_e$, e^-) scattering
($\bar{\nu}_e$, ^{16}O) capture
($\bar{\nu}_e$, ^1H) capture

João H. de Jesus

Weinberg angle at low-energy beta-beams
Low-energy beta-beams

Ions accelerated in PS

\((\gamma = 5 - 14)\)

Small \((L_{SS} \sim 700 \text{ m})\) storage ring

Near \((\sim 10 \text{ m})\) 1 kton \(H_2O\)

Čerenkov detector

\[
\begin{align*}
\text{18Ne} & \rightarrow \text{18F} + e^+ + \nu_e: \\
& (\nu_e, e^-) \text{ scattering} \\
& (\nu_e, ^{16}O) \text{ capture} \\
\text{6He} & \rightarrow \text{6Li} + e^- + \bar{\nu}_e \\
& (\bar{\nu}_e, e^-) \text{ scattering} \\
& (\bar{\nu}_e, ^{16}O) \text{ capture} \\
& (\bar{\nu}_e, ^1H) \text{ capture}
\end{align*}
\]
The concept | Low-energy \(\sin^2 \theta_W \) | Conclusions

Low-energy beta-beams

Ions accelerated in PS
(\(\gamma = 5 - 14 \))

Small (\(L_{SS} \sim 700 \text{ m} \)) storage ring

Near (\(\sim 10 \text{ m} \)) 1 kton \(\text{H}_2\text{O} \)

Čerenkov detector

\[^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e: \]
\((\nu_e, e^-) \) scattering
\((\nu_e, ^{16}\text{O}) \) capture

\[^{6}\text{He} \rightarrow ^{6}\text{Li} + e^- + \bar{\nu}_e \]
\((\bar{\nu}_e, e^-) \) scattering
\((\bar{\nu}_e, ^{16}\text{O}) \) capture
\((\bar{\nu}_e, ^{1}\text{H}) \) capture

João H. de Jesus | Weinberg angle at low-energy beta-beams

Ions accelerated in PS
\((\gamma = 5 - 14)\)

Small \((L_{SS} \sim 700 \text{ m})\) storage ring

Near \((\sim 10 \text{ m})\) 1 kton \(H_2O\)

\(\bar{\text{C}}\)erenkov detector

\(18\text{Ne} \rightarrow 18\text{F} + e^+ + \nu_e:\)

\((\nu_e, e^-)\) scattering

\((\nu_e, ^{16}\text{O})\) capture

\(6\text{He} \rightarrow 6\text{Li} + e^- + \bar{\nu}_e:\)

\((\bar{\nu}_e, e^-)\) scattering

\((\bar{\nu}_e, ^{16}\text{O})\) capture

\((\bar{\nu}_e, ^1\text{H})\) capture

João H. de Jesus

Weinberg angle at low-energy beta-beams
Low-energy beta-beams

Ions accelerated in PS
($\gamma = 5 - 14$)

Small ($L_{SS} \sim 700$ m) storage ring

Near (~ 10 m) 1 kton H_2O

Čerenkov detector

$^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e$:

(ν_e, e^-) scattering

$(\nu_e, ^{16}\text{O})$ capture

$^{6}\text{He} \rightarrow ^{6}\text{Li} + e^- + \bar{\nu}_e$

$(\bar{\nu}_e, e^-)$ scattering

$(\bar{\nu}_e, ^{16}\text{O})$ capture

$(\bar{\nu}_e, ^{1}\text{H})$ capture

João H. de Jesus

Weinberg angle at low-energy beta-beams

Ions accelerated in PS

(\(\gamma = 5 - 14\))

Small \((L_{SS} \sim 700 \text{ m})\) storage ring

Near \((\sim 10 \text{ m})\) 1 kton H₂O

Čerenkov detector

\(^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e: \)

\((\nu_e, e^-)\) scattering

\((\nu_e, ^{16}\text{O})\) capture

\(^{6}\text{He} \rightarrow ^{6}\text{Li} + e^- + \bar{\nu}_e\)

\((\bar{\nu}_e, e^-)\) scattering

\((\bar{\nu}_e, ^{16}\text{O})\) capture

\((\bar{\nu}_e, ^{1}\text{H})\) capture

Ions accelerated in PS

\(\gamma = 5 - 14 \)

Small \((L_{SS} \sim 700 \, m) \) storage ring

Near \((\sim 10 \, m) \) 1 kton \(\text{H}_2\text{O} \)

Čerenkov detector

\[^{18}\text{Ne} \rightarrow ^{18}\text{F} + \text{e}^+ + \nu_e : \]

\((\nu_e, \text{e}^-) \) scattering

\((\nu_e, ^{16}\text{O}) \) capture

\[^{6}\text{He} \rightarrow ^{6}\text{Li} + \text{e}^- + \bar{\nu}_e \]

\((\bar{\nu}_e, \text{e}^-) \) scattering

\((\bar{\nu}_e, ^{16}\text{O}) \) capture

\((\bar{\nu}_e, ^{1}\text{H}) \) capture
Low-energy beta-beams

Ions accelerated in PS
($\gamma = 5 - 14$)
Small ($L_{SS} \sim 700\ m$) storage ring
Near ($\sim 10\ m$) 1 kton H$_2$O
Čerenkov detector

$^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e$:
(ν_e, e^-) scattering
($\nu_e, ^{16}\text{O}$) capture

$^{6}\text{He} \rightarrow ^{6}\text{Li} + e^- + \bar{\nu}_e$
($\bar{\nu}_e, e^-$) scattering
($\bar{\nu}_e, ^{16}\text{O}$) capture
($\bar{\nu}_e, ^1\text{H}$) capture
Low-energy beta-beams

Ions accelerated in PS
($\gamma = 5 - 14$)

Small ($L_{SS} \sim 700$ m) storage ring

Near (~ 10 m) 1 kton H_2O Čerenkov detector

$^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e$:
- (ν_e, e^-) scattering
- ($\nu_e, ^{16}\text{O}$) capture

$^6\text{He} \rightarrow ^6\text{Li} + e^- + \bar{\nu}_e$
- ($\bar{\nu}_e, e^-$) scattering
- ($\bar{\nu}_e, ^{16}\text{O}$) capture
- ($\bar{\nu}_e, ^1\text{H}$) capture
Low-energy beta-beams

Rich physics program

- **Neutrino-nucleus interactions**: J. Serreau and C. Volpe, PRC 70 (2004); A. Bueno, M. C. Carmona, J. Lozano and S. Navas, PRD 74 (2006);
- **Neutrino magnetic moment**: G. C. McLaughlin and C. Volpe, PLB 591 (2004);
- **Electroweak tests** *(this talk)*: A. B. Balantekin, JHJ and C. Volpe, PLB 634 (2006);
- **CVC tests** *(next talk)*: A. B. Balantekin, JHJ, R. Lazauskas and C. Volpe, PRD 73 (2006);
- **Supernova neutrino spectra** *(tomorrow)*: N. Jachowicz and G. C. McLaughlin, PRL 96 (2006);
Measuring $\sin^2 \theta_W$ at low-energy beta-beams

- APV and Møller scattering consistent with SM prediction;
- NuTEV anomaly: NC/CC in $(\bar{\nu}_\mu, N)$ and (ν_μ, N) DIS disagrees with the SM prediction by 3σ;
- Probing $\sin^2 \theta_W$ through additional experiments would be very useful.
Measuring $\sin^2 \theta_W$ at low-energy beta-beams

- APV and Møller scattering consistent with SM prediction;
- NuTEV anomaly: NC/CC in $(\bar{\nu}_\mu, N)$ and (ν_μ, N) DIS disagrees with the SM prediction by 3σ;
- Probing $\sin^2 \theta_W$ through additional experiments would be very useful.

Figure credits: K. Jungmann
The concept

Low-energy

$\sin^2 \theta_W$

Conclusions

Measuring $\sin^2 \theta_W$ at low-energy beta-beams

APV and Møller scattering consistent with SM prediction;

NuTEV anomaly: NC/CC in $(\bar{\nu}_\mu, N)$ and (ν_μ, N) DIS disagrees with the SM prediction by 3σ;

Probing $\sin^2 \theta_W$ through additional experiments would be very useful.

Figure credits: K. Jungmann
Measuring $\sin^2 \theta_W$ at low-energy beta-beams

- APV and Møller scattering consistent with SM prediction;
- **NuTEV anomaly**: NC/CC in $(\bar{\nu}_\mu, N)$ and (ν_μ, N) DIS disagrees with the SM prediction by 3σ;
- Probing $\sin^2 \theta_W$ through additional experiments would be very useful.

Figure credits: K. Jungmann
Measuring $\sin^2 \theta_W$ at low-energy beta-beams

Ions accelerated in PS
($\gamma = 5 - 14$)

Small ($L \sim 700$ m) storage ring

Near (~ 10 m) 1 kton H_2O
Čerenkov detector

$^{18}\text{Ne} \rightarrow ^{18}\text{F} + e^+ + \nu_e$:

(ν_e, e^-) scattering
$(\nu_e, ^{16}\text{O})$ capture

$^6\text{He} \rightarrow ^6\text{Li} + e^- + \bar{\nu}_e$

$(\bar{\nu}_e, e^-)$ scattering
$(\bar{\nu}_e, ^{16}\text{O})$ capture
$(\bar{\nu}_e, ^1\text{H})$ capture
Neutrino-electron scattering

\[\frac{d\sigma_{(\nu,e)}}{dT_e} \sim (g_V^2 + g_A^2) + (g_V^2 - g_A^2) \left(1 - \frac{T_e}{E_\nu} \right)^2 + \cdots \]

\[g_V = \frac{1}{2} + 2 \sin^2 \theta_W + \cdots \quad g_A = \pm \frac{1}{2} + \cdots \]

Integrating over \(T_e \) and averaging over the neutrino flux \(\langle \phi_\nu \rangle \)

\[\langle \sigma_{(\nu,e)} \rangle \sim -g_V (g_V + g_A) m_e \langle \phi_\nu \rangle + \frac{4}{3} \left(g_V^2 + g_A^2 + g_V g_A \right) \langle E_\nu \rangle \]

At low-energy beta-beams, the number of \((\nu, e)\) events is

\[N_{(\nu,e)} \sim (\text{ions/s}) \Delta t \langle \sigma_{(\nu,e)} \rangle \]
Neutrino-electron scattering

\[
\frac{d\sigma_{(\nu,e)}}{dT_e} \sim \left(g_V^2 + g_A^2 \right) + \left(g_V^2 - g_A^2 \right) \left(1 - \frac{T_e}{E_\nu} \right)^2 + \cdots
\]

\[g_V = \frac{1}{2} + 2 \sin^2 \theta_W + \cdots \quad g_A = \pm \frac{1}{2} + \cdots \]

Integrating over \(T_e \) and averaging over the neutrino flux \(\langle \phi_\nu \rangle \)

\[
\langle \sigma_{(\nu,e)} \rangle \sim -g_V (g_V + g_A) m_e \langle \phi_\nu \rangle + \frac{4}{3} \left(g_V^2 + g_A^2 + g_V g_A \right) \langle E_\nu \rangle
\]

At low-energy beta-beams, the number of \((\nu, e)\) events is

\[
N_{(\nu,e)} \sim (\text{ions/s}) \Delta t \langle \sigma_{(\nu,e)} \rangle
\]
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

Neutrino-electron scattering

$$\frac{d\sigma_{(\nu,e)}}{dT_e} \sim \left(g_V^2 + g_A^2 \right) + \left(g_V^2 - g_A^2 \right) \left(1 - \frac{T_e}{E_\nu} \right)^2 + \cdots$$

$$g_V = \frac{1}{2} + 2 \sin^2 \theta_W + \cdots \quad g_A = \pm \frac{1}{2} + \cdots$$

Integrating over T_e and averaging over the neutrino flux $\langle \phi_\nu \rangle$

$$\langle \sigma_{(\nu,e)} \rangle \sim -g_V(g_V + g_A)m_e\langle \phi_\nu \rangle + \frac{4}{3} \left(g_V^2 + g_A^2 + g_Vg_A \right) \langle E_\nu \rangle$$

At low-energy beta-beams, the number of (ν, e) events is

$$N_{(\nu,e)} \sim \left(\text{ions/s} \right) \Delta t \langle \sigma_{(\nu,e)} \rangle$$
Neutrino-electron scattering

\[\frac{d\sigma_{(\nu,e)}}{dT_e} \sim \left(g_V^2 + g_A^2 \right) + \left(g_V^2 - g_A^2 \right) \left(1 - \frac{T_e}{E_\nu} \right)^2 + \cdots \]

\[g_V = 1/2 + 2 \sin^2 \theta_W + \cdots \quad g_A = \pm 1/2 + \cdots \]

Integrating over \(T_e \) and averaging over the neutrino flux \(\langle \phi_\nu \rangle \)

\[\langle \sigma_{(\nu,e)} \rangle \sim -g_V (g_V + g_A) \, m_e \langle \phi_\nu \rangle + \frac{4}{3} \left(g_V^2 + g_A^2 + g_V g_A \right) \langle E_\nu \rangle \]

At low-energy beta-beams, the number of \((\nu, e)\) events is

\[N_{(\nu,e)} \sim (\text{ions/s}) \Delta t \langle \sigma_{(\nu,e)} \rangle \]
The slope tells us about $\sin^2 \theta_W$;

Neutrino flux dependence on γ;

$N(\gamma)E_0(\gamma)$ independent of intensity of ions and duration of measurement... σ_{NE_0} depends on those;

$$\Delta \chi^2(f, \Delta t) \sim \sum \gamma \left[\frac{N_{\text{data}}(\gamma) - N_{\text{exp}}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2$$

$\Delta t = 3 \times 10^7$ s (a.k.a one year)

$\bar{\nu} (\text{He}) : f = 2.7 \times 10^{12}$ ions/s \hspace{1cm} $\nu (\text{Ne}) : f = 0.5 \times 10^{11}$ ions/s
The concept: Low-energy sin$^2 \theta_W$

Conclusions

The Weinberg angle at beta-beams

$$N(\gamma)E_0(\gamma) - g_A^2 m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_V g_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4} m_e \right]$$

The slope tells us about sin$^2 \theta_W$;

Neutrino flux dependence on γ;

$N(\gamma)E_0(\gamma)$ independent of intensity of ions and duration of measurement... σ_{NE_0} depends on those;

$$\Delta \chi^2(f, \Delta t) \sim \sum_{\gamma} \left[\frac{N_{\text{data}}(\gamma) - N_{\text{exp}}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2$$

$$\Delta t = 3 \times 10^7 \text{ s (a.k.a one year)}$$

$\bar{\nu} (\text{He}): \ f = 2.7 \times 10^{12} \text{ ions/s} \quad \nu (\text{Ne}): \ f = 0.5 \times 10^{11} \text{ ions/s}$
The concept

Low-energy

$\sin^2 \theta_W$

Conclusions

$\langle E_\nu(\gamma) \rangle / \langle \Phi_{tot}(\gamma) \rangle - (3/4)m_e$ [MeV]

$N(\gamma)E_0(\gamma) - g_A$ m_e [MeV]

slope $\sim g_V^2 + g_A^2 + g_V g_A$

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept

The Weinberg angle at beta-beams

\[N(\gamma)E_0(\gamma) - g_A^2m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_Vg_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4}m_e \right] \]

The slope tells us about \(\sin^2 \theta_W \);

Neutrino flux dependence on \(\gamma \);

\(N(\gamma)E_0(\gamma) \) independent of intensity of ions and duration of measurement... \(\sigma_{NE_0} \) depends on those;

\[\Delta \chi^2(f, \Delta t) \sim \sum \left[\frac{N_{\text{data}}(\gamma) - N_{\text{exp}}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2 \]

\(\Delta t = 3 \times 10^7 \) s (a.k.a one year)

\(\nu(\text{He}) : f = 2.7 \times 10^{12} \) ions/s \(\nu(\text{Ne}) : f = 0.5 \times 10^{11} \) ions/s
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

$\phi_{\text{tot}}(E_\nu) [\text{MeV}^{-1}\text{s}^{-1}]$

$\gamma = 12$

$\gamma = 7$

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept

Low-energy

$\sin^2 \theta_W$

Conclusions
The Weinberg angle at beta-beams

\[N(\gamma)E_0(\gamma) - g_A^2 m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_V g_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4} m_e \right] \]

The slope tells us about \(\sin^2 \theta_W \);

Neutrino flux dependence on \(\gamma \);

\(N(\gamma)E_0(\gamma) \) independent of intensity of ions and duration of measurement...

\[\sigma_{NE_0} \] depends on those;

\[\Delta \chi^2(f, \Delta t) \sim \sum_{\gamma} \left(N_{\text{data}}(\gamma) - N_{\exp}(\gamma) \right)^2 \sigma_{\text{data}}(\gamma) \]

\[\Delta t = 3 \times 10^7 \text{ s} \quad \text{(a few one year)} \]

\[f (\text{He}) : \quad f = 2.7 \times 10^{12} \text{ ions/s} \quad \sigma (\text{He}) : \quad f = 0.5 \times 10^{11} \text{ ions/s} \]
The Weinberg angle at beta-beams

\[N(\gamma)E_0(\gamma) - g_A^2 m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_V g_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4} m_e \right] \]

The slope tells us about \(\sin^2 \theta_W \);
Neutrino flux dependence on \(\gamma \);
\(N(\gamma)E_0(\gamma) \) independent of intensity of ions and duration of measurement... \(\sigma_{NE_0} \) depends on those;

\[\Delta \chi^2(f, \Delta t) \sim \sum_{\gamma} \left[\frac{N_{\text{data}}(\gamma) - N_{\text{exp}}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2 \]

\[\Delta t = 3 \times 10^7 \text{ s} \quad (a.k.a \text{ one year}) \]

\(\bar{\nu} (\text{He}) : \ f = 2.7 \times 10^{12} \text{ ions/s} \quad \nu (\text{Ne}) : \ f = 0.5 \times 10^{11} \text{ ions/s} \)
Short measurement duration
Low intensity of ions

\[\frac{N(\gamma)E_0(\gamma)}{\Phi_{\text{tot}}(\gamma)} - \frac{3}{4}m_e \text{ [MeV]} \]
The concept

Low-energy

$\sin^2 \theta_W$

Conclusions

$<E_{\nu}(\gamma)/<\Phi_{tot}(\gamma)> - (3/4)m_e \text{ [MeV]}$

João H. de Jesus
Weinberg angle at low-energy beta-beams
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

The Weinberg angle at beta-beams

\[N(\gamma)E_0(\gamma) - g_A^2 m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_V g_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4} m_e \right] \]

The slope tells us about $\sin^2 \theta_W$;

Neutrino flux dependence on γ;

$N(\gamma)E_0(\gamma)$ independent of intensity of ions and duration of measurement... σ_{NE_0} depends on those;

\[\Delta \chi^2(f, \Delta t) \sim \sum_{\gamma} \left[\frac{N_{\text{data}}(\gamma) - N_{\exp}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2 \]

$\Delta t = 3 \times 10^7$ s (a.k.a. one year)

$\bar{\nu}$ (He): $f = 2.7 \times 10^{12}$ ions/s ν (Ne): $f = 0.5 \times 10^{11}$ ions/s
The Weinberg angle at beta-beams

\[N(\gamma)E_0(\gamma) - g_A^2 m_e = \frac{4}{3} \left(g_A^2 + g_V^2 + g_V g_A \right) \left[\frac{\langle E(\gamma) \rangle}{\langle \phi(\gamma) \rangle} - \frac{3}{4} m_e \right] \]

The slope tells us about \(\sin^2 \theta_W \);

Neutrino flux dependence on \(\gamma \);

\(N(\gamma)E_0(\gamma) \) independent of intensity of ions and duration of measurement... \(\sigma_{NE_0} \) depends on those;

\[\Delta \chi^2(f, \Delta t) \sim \sum_\gamma \left[\frac{N_{\text{data}}(\gamma) - N_{\exp}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2 \]

\[\Delta t = 3 \times 10^7 \text{ s} \quad (\text{a.k.a. one year}) \]

\(\bar{\nu} (\text{He}) : f = 2.7 \times 10^{12} \text{ ions/s} \quad \nu (\text{Ne}) : f = 0.5 \times 10^{11} \text{ ions/s} \)
The slope tells us about $\sin^2 \theta_W$;

Neutrino flux dependence on γ;

$N(\gamma)E_0(\gamma)$ independent of intensity of ions and duration of measurement... σ_{NE_0} depends on those;

$$\Delta \chi^2(f, \Delta t) \sim \sum \left[\frac{N_{\text{data}}(\gamma) - N_{\exp}(\gamma)}{\sigma_{\text{data}}(\gamma)} \right]^2$$

$$\Delta t = 3 \times 10^7 \text{ s (a.k.a. one year)}$$

$\bar{\nu} (He)$: $f = 2.7 \times 10^{12} \text{ ions/s}$
$\nu (Ne)$: $f = 0.5 \times 10^{11} \text{ ions/s}$
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

$0.15 \quad 0.18 \quad 0.21 \quad 0.24 \quad 0.27 \quad 0.3$

$\sin^2 \theta_W$

$\Delta \chi^2$

$\gamma = 7.12$

antineutrinos

neutrinos

$1\sigma = 12.3\%$

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

$\Delta \chi^2 = 7, 8, 9, 10, 11, 12$

$\gamma = 7, 12$

$\gamma = 12$

12.3%

15.2%

7.1%

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept

Low-energy $\sin^2 \theta_W$

Conclusions

$0.15 \ 0.18 \ 0.21 \ 0.24 \ 0.27 \ 0.3$

$\sin^2 \theta_W$

$\Delta \chi^2 = 7, 8, 9, 10, 11, 12$

$\chi^2 = 7, 12$

$\chi^2 = 12$

12.3%

15.2%

7.1%

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept
Low-energy $\sin^2 \theta_W$
Conclusions

$0.15 \ 0.18 \ 0.21 \ 0.24 \ 0.27 \ 0.3$

$\sin \ 2 \ \theta \ W$

$\Delta \chi^2$

$\gamma=7, 8, 9, 10, 11, 12$

$\gamma=7, 12$

$\gamma=12$

12.3\%

15.2\%

7.1\%
The concept

Low-energy \(\sin^2 \theta_W \)

Conclusions

1e+12 3e+12 5e+12 7e+12 9e+12

6

\(^6 \text{He}^{2+} \) intensity at the storage ring [ions/s]

3

18

\(\sigma \) uncertainty in \(\sin^2 \theta_W \) [%]

1 year

2.7x10^{12} ions/s

Measurement duration for each \(\gamma \) [s]

2e+07 4e+07 6e+07 8e+07 1e+08

one \(\gamma \)
two \(\gamma \)'s

two \(\gamma \)'s

six \(\gamma \)'s

João H. de Jesus

Weinberg angle at low-energy beta-beams
The concept

Conclusions

Systematic error at each γ [%]

1σ uncertainty in $\sin^2 \theta_W$ [%]

João H. de Jesus
Weinberg angle at low-energy beta-beams
Low-energy beta-beams provide *clean* single type neutrino fluxes plus a range of $\langle E_\nu \rangle$.

They can be used to measure the Weinberg angle at $Q \sim 10^{-2}$ GeV to a better precision than LSND.

A factor of three increase in the intensity of the ions (plus controlled systematics) can bring the 1σ uncertainty in the Weinberg angle down to $7\% - 10\%$.
Conclusions

Low-energy beta-beams provide *clean* single type neutrino fluxes plus a range of $\langle E_\nu \rangle$.

They can be used to measure the Weinberg angle at $Q \sim 10^{-2}$ GeV to a better precision than LSND.

A factor of three increase in the intensity of the ions (plus controlled systematics) can bring the 1σ uncertainty in the Weinberg angle down to 7% – 10%.
Conclusions

Low-energy beta-beams provide clean single type neutrino fluxes plus a range of $\langle E_\nu \rangle$.

They can be used to measure the Weinberg angle at $Q \sim 10^{-2}$ GeV to a better precision than LSND.

A factor of three increase in the intensity of the ions (plus controlled systematics) can bring the 1σ uncertainty in the Weinberg angle down to 7% – 10%.